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We establish permuton convergence and local convergence for large uniform random
square permutations. First we describe the global behavior by showing that these
permutations have a permuton limit which can be characterized as a random rectan-
gle. We also explore fluctuations about this random rectangle, which we can describe
through coupled Brownian motions. Second, we consider the limiting behavior of the
neighborhood of a point in the permutation through local limits. As a byproduct, we
also determine the random limiting distribution of the proportion of occurrences and
consecutive occurrences of any given pattern in a uniform random square permuta-
tion.

Figure 1: The diagram of two typical square permutations of size 1000 and 1000 000.

Square permutations

Square permutations are permutations where every point is a record, i.e., a maximum
or minimum, either from the left or from the right. Square permutations can be also
described as a pattern-avoiding class, where the avoided patterns are all 16 patterns of
length five with a point that is not a record. Mansour and Severini [7] determine the
enumeration of the class proving that there are 2(n + 2)4"~3 — 4(2n — 5) (2;:36) square
permutations of size n. This permutation class was later discussed in [5, 6, 1] (in this
last paper the authors refer to square permutations as convex permutations). In this

talk we focus on the shape of square permutations.

Sampling asymptotically uniform square permutations

The starting point for all our results is the sampling procedure described in this sec-
tion. We define a projection from the set of square permutations to the set of anchored
pairs of sequences of labels, i.e., triples (X,Y,z9) € {U,D}" x {L,R}" x [n]. For every
square permutation o, the labels of (X,Y) are determined by the record types (the
sequence X records if a point is a maximum (U) or a minimum (D) and the sequence



Y records if a point is a left-to-right record (L) or a right-to-left record (R)) and the
anchor z is determined by the value c—!(1) (see Fig. 2 for an example).
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Figure 2: A square permutation ¢ with the associated anchored pair of sequences
(X,Y,zp). The sequence X is reported under the diagram of the permutation and the
sequence Y on the left.

This projection map is not surjective, but we can identify subsets of anchored pairs of
sequences (called reqular) and of square permutations where the projection map is a
bijection. We then construct a simple algorithm to produce a square permutation from
regular anchored pairs of sequences. We show that asymptotically almost all square
permutations can be constructed from regular anchored pairs of sequences, thus a
permutation sampled uniformly from the set of regular anchored pairs of sequences
will produce, asymptotically, a uniform square permutation.

Permuton limits, fluctuations and local limits

The first result we proved is the existence of the permuton limit for uniform square
permutations. A permuton is a probability measure on the square [0, 1]2 with uniform
marginals. Every permutation can be associated with the permuton induced by the
sum of Dirac measures on points of the diagram of the permutation scaled to fit
within [0, 1]2. We show that for a large square permutation ¢ that projects to a regular
anchored pair of sequences, the permuton associated with ¢ is close to a permuton
given by a rectangle (see for instance Fig. 1) embedded in [0,1]? with sides of slope
+1 and bottom corner at (c~!(1)/n,0). This allows us to show that the permuton
limit of uniform square permutations is a rectangle embedded in [0, 1]> with sides of
slope £1 and bottom corner at (z,0), where z is a uniform point in the interval [0, 1]
(we denote random quantities using bold characters).

The second result deals with fluctuations about the lines of the rectangle of the permu-
ton limit. We show that they can be described by certain coupled Brownian motions.
The latter arises naturally from the projection map described above, namely, the fluc-
tuations around the bottom left edge of the rectangle (see Fig. 2) are determined by
the distribution of the D’s in the left part of the sequence X and of the L’s in the lower
part of the sequence Y. The coupling between Brownian motions comes from the fact
that the total number of labels of each type on a given interval (either horizontal or



vertical) sums up to the size of the interval.

The third result is a local limit theorem for square permutations. Our result is stated
in terms of the local topology introduced by the speaker in [2]. We look at the neigh-
borhood of a random element of a uniform square permutation and we study, for
all h € IN, the consecutive pattern induced by the / elements on the right and on
the left of the chosen element, showing that, when the size of the whole permutation
tends to infinity, this consecutive pattern converges in distribution to a random limit-
ing pattern. Square permutations are the first natural but non-trivial model were the
local limiting object is random (we recall that this is not the case for uniform random
permutations avoiding a pattern of length three [2] or for uniform permutations in
substitution-closed classes [3], where the local limiting objects are deterministic).

Our first and third results, i.e., the permuton and local limits, can be interpreted in
terms of the convergence of the proportion of occurrences and consecutive occur-
rences of any given pattern in a uniform random square permutation. We denote
with occ(7t, o) (resp. (c-occ(7, o)) the proportion of occurrences (resp. consecutive
occurrences) of a pattern 77 in ¢, and with S the set of permutations. We can de-
duce that if o, is a uniform random square permutation of size 7, then the following
convergences (w.r.t. the product topology) hold:

o~ d —— d
(occ(7, 04))nes = (An)res and  (c-occ(r, U'n))neg = (Br)res,

where (Az)res and (Ax)res are random vectors that can be described in terms of the
permuton and local limits of square permutations.
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