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Preface

These are the lecture notes for a one quarter graduate course in Stochastic Pro-
cesses that I taught at Stanford University in 2002 and 2003. This course is intended
for incoming master students in Stanford’s Financial Mathematics program, for ad-
vanced undergraduates majoring in mathematics and for graduate students from
Engineering, Economics, Statistics or the Business school. One purpose of this text
is to prepare students to a rigorous study of Stochastic Differential Equations. More
broadly, its goal is to help the reader understand the basic concepts of measure the-
ory that are relevant to the mathematical theory of probability and how they apply
to the rigorous construction of the most fundamental classes of stochastic processes.

Towards this goal, we introduce in Chapter 1 the relevant elements from measure
and integration theory, namely, the probability space and the σ-fields of events
in it, random variables viewed as measurable functions, their expectation as the
corresponding Lebesgue integral, independence, distribution and various notions of
convergence. This is supplemented in Chapter 2 by the study of the conditional
expectation, viewed as a random variable defined via the theory of orthogonal
projections in Hilbert spaces.

After this exploration of the foundations of Probability Theory, we turn in Chapter
3 to the general theory of Stochastic Processes, with an eye towards processes
indexed by continuous time parameter such as the Brownian motion of Chapter
5 and the Markov jump processes of Chapter 6. Having this in mind, Chapter
3 is about the finite dimensional distributions and their relation to sample path
continuity. Along the way we also introduce the concepts of stationary and Gaussian
stochastic processes.

Chapter 4 deals with filtrations, the mathematical notion of information pro-
gression in time, and with the associated collection of stochastic processes called
martingales. We treat both discrete and continuous time settings, emphasizing the
importance of right-continuity of the sample path and filtration in the latter case.
Martingale representations are explored, as well as maximal inequalities, conver-
gence theorems and applications to the study of stopping times and to extinction
of branching processes.

Chapter 5 provides an introduction to the beautiful theory of the Brownian mo-
tion. It is rigorously constructed here via Hilbert space theory and shown to be a
Gaussian martingale process of stationary independent increments, with continuous
sample path and possessing the strong Markov property. Few of the many explicit
computations known for this process are also demonstrated, mostly in the context
of hitting times, running maxima and sample path smoothness and regularity.
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6 PREFACE

Chapter 6 provides a brief introduction to the theory of Markov chains and pro-
cesses, a vast subject at the core of probability theory, to which many text books
are devoted. We illustrate some of the interesting mathematical properties of such
processes by examining the special case of the Poisson process, and more generally,
that of Markov jump processes.

As clear from the preceding, it normally takes more than a year to cover the scope
of this text. Even more so, given that the intended audience for this course has only
minimal prior exposure to stochastic processes (beyond the usual elementary prob-
ability class covering only discrete settings and variables with probability density
function). While students are assumed to have taken a real analysis class dealing
with Riemann integration, no prior knowledge of measure theory is assumed here.
The unusual solution to this set of constraints is to provide rigorous definitions,
examples and theorem statements, while forgoing the proofs of all but the most
easy derivations. At this somewhat superficial level, one can cover everything in a
one semester course of forty lecture hours (and if one has highly motivated students
such as I had in Stanford, even a one quarter course of thirty lecture hours might
work).

In preparing this text I was much influenced by Zakai’s unpublished lecture notes
[Zak]. Revised and expanded by Shwartz and Zeitouni it is used to this day for
teaching Electrical Engineering Phd students at the Technion, Israel. A second
source for this text is Breiman’s [Bre92], which was the intended text book for my
class in 2002, till I realized it would not do given the preceding constraints. The
resulting text is thus a mixture of these influencing factors with some digressions
and additions of my own.

I thank my students out of whose work this text materialized. Most notably I
thank Nageeb Ali, Ajar Ashyrkulova, Alessia Falsarone and Che-Lin Su who wrote
the first draft out of notes taken in class, Barney Hartman-Glaser, Michael He,
Chin-Lum Kwa and Chee-Hau Tan who used their own class notes a year later in
a major revision, reorganization and expansion of this draft, and Gary Huang and
Mary Tian who helped me with the intricacies of LATEX.

I am much indebted to my colleague Kevin Ross for providing many of the exercises
and all the figures in this text. Kevin’s detailed feedback on an earlier draft of these
notes has also been extremely helpful in improving the presentation of many key
concepts.

Amir Dembo

Stanford, California
January 2008



CHAPTER 1

Probability, measure and integration

This chapter is devoted to the mathematical foundations of probability theory.
Section 1.1 introduces the basic measure theory framework, namely, the proba-
bility space and the σ-fields of events in it. The next building block are random
variables, introduced in Section 1.2 as measurable functions ω 7→ X(ω). This allows
us to define the important concept of expectation as the corresponding Lebesgue
integral, extending the horizon of our discussion beyond the special functions and
variables with density, to which elementary probability theory is limited. As much
of probability theory is about asymptotics, Section 1.3 deals with various notions
of convergence of random variables and the relations between them. Section 1.4
concludes the chapter by considering independence and distribution, the two funda-
mental aspects that differentiate probability from (general) measure theory, as well
as the related and highly useful technical tools of weak convergence and uniform
integrability.

1.1. Probability spaces and σ-fields

We shall define here the probability space (Ω,F ,P) using the terminology of mea-
sure theory. The sample space Ω is a set of all possible outcomes ω ∈ Ω of some
random experiment or phenomenon. Probabilities are assigned by a set function
A 7→ P(A) to A in a subset F of all possible sets of outcomes. The event space F
represents both the amount of information available as a result of the experiment
conducted and the collection of all events of possible interest to us. A pleasant
mathematical framework results by imposing on F the structural conditions of a
σ-field, as done in Subsection 1.1.1. The most common and useful choices for this
σ-field are then explored in Subsection 1.1.2.

1.1.1. The probability space (Ω,F , P). We use 2Ω to denote the set of all
possible subsets of Ω. The event space is thus a subset F of 2Ω, consisting of all
allowed events, that is, those events to which we shall assign probabilities. We next
define the structural conditions imposed on F .

Definition 1.1.1. We say that F ⊆ 2Ω is a σ-field (or a σ-algebra), if
(a) Ω ∈ F ,
(b) If A ∈ F then Ac ∈ F as well (where Ac = Ω \A).
(c) If Ai ∈ F for i = 1, 2 . . . then also

⋃∞
i=1 Ai ∈ F .

Remark. Using DeMorgan’s law you can easily check that if Ai ∈ F for i = 1, 2 . . .
and F is a σ-field, then also

⋂
iAi ∈ F . Similarly, you can show that a σ-field is

closed under countably many elementary set operations.
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8 1. PROBABILITY, MEASURE AND INTEGRATION

Definition 1.1.2. A pair (Ω,F) with F a σ-field of subsets of Ω is called a
measurable space. Given a measurable space, a probability measure P is a function
P : F → [0, 1], having the following properties:
(a) 0 ≤ P(A) ≤ 1 for all A ∈ F .
(b) P(Ω) = 1.
(c) (Countable additivity) P(A) =

∑∞
n=1 P(An) whenever A =

⋃∞
n=1An is a

countable union of disjoint sets An ∈ F (that is, An

⋂
Am = ∅, for all n 6= m).

A probability space is a triplet (Ω,F , P), with P a probability measure on the
measurable space (Ω,F).

The next exercise collects some of the fundamental properties shared by all prob-
ability measures.

Exercise 1.1.3. Let (Ω,F ,P) be a probability space and A,B,Ai events in F .
Prove the following properties of every probability measure.

(a) Monotonicity. If A ⊆ B then P(A) ≤ P(B).
(b) Sub-additivity. If A ⊆ ∪iAi then P(A) ≤ ∑

i P(Ai).
(c) Continuity from below: If Ai ↑ A, that is, A1 ⊆ A2 ⊆ . . . and ∪iAi = A,

then P(Ai) ↑ P(A).
(d) Continuity from above: If Ai ↓ A, that is, A1 ⊇ A2 ⊇ . . . and ∩iAi = A,

then P(Ai) ↓ P(A).
(e) Inclusion-exclusion rule:

P(

n⋃

i=1

Ai) =
∑

i

P(Ai)−
∑

i<j

P(Ai ∩ Aj) +
∑

i<j<k

P(Ai ∩Aj ∩ Ak)

− · · ·+ (−1)n+1P(A1 ∩ · · · ∩ An)

The σ-field F always contains at least the set Ω and its complement, the empty
set ∅. Necessarily, P(Ω) = 1 and P(∅) = 0. So, if we take F0 = {∅,Ω} as our
σ-field, then we are left with no degrees of freedom in choice of P. For this reason
we call F0 the trivial σ-field.
Fixing Ω, we may expect that the larger the σ-field we consider, the more freedom
we have in choosing the probability measure. This indeed holds to some extent,
that is, as long as we have no problem satisfying the requirements (a)-(c) in the
definition of a probability measure. For example, a natural question is when should
we expect the maximal possible σ-field F = 2Ω to be useful?

Example 1.1.4. When the sample space Ω is finite we can and typically shall take
F = 2Ω. Indeed, in such situations we assign a probability pω > 0 to each ω ∈ Ω
making sure that

∑
ω∈Ω pω = 1. Then, it is easy to see that taking P(A) =

∑
ω∈A pω

for any A ⊆ Ω results with a probability measure on (Ω, 2Ω). For instance, when we
consider a single coin toss we have Ω1 = {H,T} (ω = H if the coin lands on its head
and ω = T if it lands on its tail), and F1 = {∅,Ω, {H}, {T}}. Similarly, when we
consider any finite number of coin tosses, say n, we have Ωn = {(ω1, . . . , ωn) : ωi ∈
{H,T}, i = 1, . . . , n}, that is Ωn is the set of all possible n-tuples of coin tosses,
while Fn = 2Ωn is the collection of all possible sets of n-tuples of coin tosses. The
same construction applies even when Ω is infinite, provided it is countable. For
instance, when Ω = {0, 1, 2, . . .} is the set of all non-negative integers and F = 2Ω,
we get the Poisson probability measure of parameter λ > 0 when starting from

pk = λk

k! e
−λ for k = 0, 1, 2, . . ..
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When Ω is uncountable such a strategy as in Example 1.1.4 will no longer work.
The problem is that if we take pω = P({ω}) > 0 for uncountably many values of
ω, we shall end up with P(Ω) = ∞. Of course we may define everything as before

on a countable subset Ω̂ of Ω and demand that P(A) = P(A ∩ Ω̂) for each A ⊆ Ω.
Excluding such trivial cases, to genuinely use an uncountable sample space Ω we
need to restrict our σ-field F to a strict subset of 2Ω.

1.1.2. Generated and Borel σ-fields. Enumerating the sets in the σ-field
F it not a realistic option for uncountable Ω. Instead, as we see next, the most
common construction of σ-fields is then by implicit means. That is, we demand
that certain sets (called the generators) be in our σ-field, and take the smallest
possible collection for which this holds.

Definition 1.1.5. Given a collection of subsets Aα ⊆ Ω, where α ∈ Γ a not
necessarily countable index set, we denote the smallest σ-field F such that Aα ∈ F
for all α ∈ Γ by σ({Aα}) (or sometimes by σ(Aα, α ∈ Γ)), and call σ({Aα}) the
σ-field generated by the collection {Aα}. That is,
σ({Aα}) =

⋂{G : G ⊆ 2Ω is a σ − field, Aα ∈ G ∀α ∈ Γ}.

Definition 1.1.5 works because the intersection of (possibly uncountably many)
σ-fields is also a σ-field, which you will verify in the following exercise.

Exercise 1.1.6. Let Aα be a σ-field for each α ∈ Γ, an arbitrary index set.

(a) Show that
⋂

α∈Γ Aα is a σ-field.
(b) Provide an example of two σ-fields F and G such that F ∪ G is not a

σ-field.

Different sets of generators may result with the same σ-field. For example, taking
Ω = {1, 2, 3} it is not hard to check that σ({1}) = σ({2, 3}) = {∅, {1}, {2, 3}, {1, 2, 3}}.

Example 1.1.7. An example of a generated σ-field is the Borel σ-field on R. It
may be defined as B = σ({(a, b) : a, b ∈ R}).

The following lemma lays out the strategy one employs to show that the σ-fields
generated by two different collections of sets are actually identical.

Lemma 1.1.8. If two different collections of generators {Aα} and {Bβ} are such
that Aα ∈ σ({Bβ}) for each α and Bβ ∈ σ({Aα}) for each β, then σ({Aα}) =
σ({Bβ}).

Proof. Recall that if a collection of sets A is a subset of a σ-field G, then by
Definition 1.1.5 also σ(A) ⊆ G. Applying this for A = {Aα} and G = σ({Bβ}) our
assumption that Aα ∈ σ({Bβ}) for all α results with σ({Aα}) ⊆ σ({Bβ}). Similarly,
our assumption that Bβ ∈ σ({Aα}) for all β results with σ({Bβ}) ⊆ σ({Aα}).
Taken together, we see that σ({Aα}) = σ({Bβ}).

For instance, considering BQ = σ({(a, b) : a, b ∈ Q}), we have by the preceding
lemma that BQ = B as soon as we show that any interval (a, b) is in BQ. To verify
this fact, note that for any real a < b there are rational numbers qn < rn such that
qn ↓ a and rn ↑ b, hence (a, b) = ∪n(qn, rn) ∈ BQ. Following the same approach,
you are to establish next a few alternative definitions for the Borel σ-field B.
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Exercise 1.1.9. Verify the alternative definitions of the Borel σ-field B:
σ({(a, b) : a < b ∈ R}) = σ({[a, b] : a < b ∈ R}) = σ({(−∞, b] : b ∈ R})

= σ({(−∞, b] : b ∈ Q}) = σ({O ⊆ R open })
Hint: Any O ⊆ R open is a countable union of sets (a, b) for a, b ∈ Q (rational).

If A ⊆ R is in B of Example 1.1.7, we say that A is a Borel set. In particular, all
open or closed subsets of R are Borel sets, as are many other sets. However,

Proposition 1.1.10. There exists a subset of R that is not in B. That is, not all
sets are Borel sets.

Despite the above proposition, all sets encountered in practice are Borel sets.
Often there is no explicit enumerative description of the σ-field generated by an
infinite collection of subsets. A notable exception is G = σ({[a, b] : a, b ∈ Z}),
where one may check that the sets in G are all possible unions of elements from the
countable collection {{b}, (b, b+ 1), b ∈ Z}. In particular, B 6= G since for example
(0, 1/2) /∈ G.
Example 1.1.11. One example of a probability measure defined on (R,B) is the
Uniform probability measure on (0, 1), denoted U and defined as following. For
each interval (a, b) ⊆ (0, 1), a < b, we set U((a, b)) = b − a (the length of the
interval), and for any other open interval I we set U(I) = U(I ∩ (0, 1)).

Note that we did not specify U(A) for each Borel set A, but rather only for
the generators of the Borel σ-field B. This is a common strategy, as under mild
conditions on the collection {Aα} of generators each probability measureQ specified
only for the sets Aα can be uniquely extended to a probability measure P on
σ({Aα}) that coincides with Q on all the sets Aα (and these conditions hold for
example when the generators are all open intervals in R).

Exercise 1.1.12. Check that the following are Borel sets and find the probabil-
ity assigned to each by the uniform measure of the preceding example: (0, 1/2) ∪
(1/2, 3/2), {1/2}, a countable subset A of R, the set T of all irrational numbers
within (0, 1), the interval [0, 1] and the set R of all real numbers.

Example 1.1.13. Another classical example of an uncountable Ω is relevant for
studying the experiment with an infinite number of coin tosses, that is, Ω∞ = ΩN

1

for Ω1 = {H,T} (recall that setting H = 1 and T = 0, each infinite sequence
ω ∈ Ω∞ is in correspondence with a unique real number x ∈ [0, 1] with ω being the
binary expansion of x). The σ-field should at least allow us to consider any possible
outcome of a finite number of coin tosses. The natural σ-field in this case is the
minimal σ-field having this property, that is, Fc = σ(An,θ, θ ∈ {H,T}n, n < ∞),
for the subsets An,θ = {ω : ωi = θi, i = 1 . . . , n} of Ω∞ (e.g. A1,H is the set of
all sequences starting with H and A2,TT are all sequences starting with a pair of T
symbols). This is also our first example of a stochastic process, to which we return
in the next section.

Note that any countable union of sets of probability zero has probability zero,
but this is not the case for an uncountable union. For example, U({x}) = 0 for
every x ∈ R, but U(R) = 1. When we later deal with continuous time stochastic
processes we should pay attention to such difficulties!
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1.2. Random variables and their expectation

Random variables are numerical functions ω 7→ X(ω) of the outcome of our ran-
dom experiment. However, in order to have a successful mathematical theory, we
limit our interest to the subset of measurable functions, as defined in Subsection
1.2.1 and study some of their properties in Subsection 1.2.2. Taking advantage
of these we define the mathematical expectation in Subsection 1.2.3 as the corre-
sponding Lebesgue integral and relate it to the more elementary definitions that
apply for simple functions and for random variables having a probability density
function.

1.2.1. Indicators, simple functions and random variables. We start
with the definition of a random variable and two important examples of such ob-
jects.

Definition 1.2.1. A Random Variable (R.V.) is a function X : Ω → R such
that ∀α ∈ R the set {ω : X(ω) ≤ α} is in F (such a function is also called a
F -measurable or, simply, measurable function).

Example 1.2.2. For any A ∈ F the function IA(ω) =

{
1, ω ∈ A

0, ω /∈ A
is a R.V.

since {ω : IA(ω) ≤ α} =





Ω, α ≥ 1

Ac, 0 ≤ α < 1

∅, α < 0

all of whom are in F . We call such

R.V. also an indicator function.

Example 1.2.3. By same reasoning check that X(ω) =
∑N

n=1 cnIAn(ω) is a R.V.
for any finite N , non-random cn ∈ R and sets An ∈ F . We call any such X a
simple function, denoted by X ∈ SF.

Exercise 1.2.4. Verify the following properties of indicator R.V.-s.

(a) I∅(ω) = 0 and IΩ(ω) = 1
(b) IAc(ω) = 1− IA(ω)
(c) IA(ω) ≤ IB(ω) if and only if A ⊆ B
(d) I∩iAi(ω) =

∏
i IAi(ω)

(e) If Ai are disjoint then I∪iAi(ω) =
∑

i IAi(ω)

Though in our definition of a R.V. the σ-field F is implicit, the choice of F is very
important (and we sometimes denote by mF the collection of all R.V. for a given
σ-field F). For example, there are non-trivial σ-fields G and F on Ω = R such
that X(ω) = ω is measurable for (Ω,F), but not measurable for (Ω,G). Indeed,
one such example is when F is the Borel σ-field B and G = σ({[a, b] : a, b ∈ Z})
(for example, the set {ω : ω ≤ α} is not in G whenever α /∈ Z). To practice your
understanding, solve the following exercise at this point.

Exercise 1.2.5. Let Ω = {1, 2, 3}. Find a σ-field F such that (Ω,F) is a measur-
able space, and a mapping X from Ω to R, such that X is not a random variable
on (Ω,F).

Our next proposition explains why simple functions are quite useful in probability
theory.
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Figure 1. Illustration of approximation of a random variable us-
ing simple functions for different values of n.

Proposition 1.2.6. For every R.V. X(ω) there exists a sequence of simple func-
tions Xn(ω) such that Xn(ω) → X(ω) as n→ ∞, for each fixed ω ∈ Ω.

Proof. Let

fn(x) = n1x>n +

n2n−1∑

k=0

k2−n1(k2−n,(k+1)2−n](x) ,

noting that for R.V. X ≥ 0, we have that Xn = fn(X) are simple functions. Since
X ≥ Xn+1 ≥ Xn and X(ω) − Xn(ω) ≤ 2−n whenever X(ω) ≤ n, it follows that
Xn(ω) → X(ω) as n→ ∞, for each ω.
We write a general R.V. as X(ω) = X+(ω)−X−(ω) where X+(ω) = max(X(ω), 0)
and X−(ω) = −min(X(ω), 0) are non-negative R.V.-s. By the above argument the
simple functions Xn = fn(X+)−fn(X−) have the convergence property we claimed.
(See Figure 1 for an illustration.)

The concept of almost sure prevails throughout probability theory.

Definition 1.2.7. We say that R.V. X and Y defined on the same probability
space (Ω,F ,P) are almost surely the same if P({ω : X(ω) 6= Y (ω)}) = 0. This

shall be denoted by X
a.s.
= Y . More generally, the same notation applies to any

property of a R.V. For example, X(ω) ≥ 0 a.s. means that P({ω : X(ω) < 0}) = 0.
Hereafter, we shall consider such X and Y to be the same R.V. hence often omit the
qualifier “a.s.” when stating properties of R.V. We also use the terms almost surely
(a.s.), almost everywhere (a.e.), and with probability 1 (w.p.1) interchangeably.
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The most important σ-fields are those “generated” by random variables, as defined
next.

Definition 1.2.8. Given a R.V. X we denote by σ(X) the smallest σ-field G ⊆ F
such that X(ω) is measurable on (Ω,G). One can show that σ(X) = σ({ ω : X(ω) ≤
α}). We call σ(X) the σ-field generated byX and interchangeably use the notations
σ(X) and FX . Similarly, given R.V. X1, . . . , Xn on the same measurable space
(Ω,F), denote by σ(Xk, k ≤ n) the smallest σ-field F such that Xk(ω), k = 1, . . . , n
are measurable on (Ω,F). That is, σ(Xk, k ≤ n) is the smallest σ-field containing
σ(Xk) for k = 1, . . . , n.

Remark. One could also consider the possibly larger σ-field σ̂(X) = σ({ω :
X(ω) ∈ B}, for all Borel sets B), but it can be shown that σ(X) = σ̂(X), a fact
that we often use in the sequel (that σ(X) ⊆ σ̂(X) is obvious, and with some effort
one can also check that the converse holds).

Exercise 1.2.9. Consider a sequence of two coin tosses, Ω = {HH,HT, TH, TT },
F = 2Ω, ω = (ω1ω2). Specify σ(X0), σ(X1), and σ(X2) for the R.V.-s:

X0(ω) = 4,

X1(ω) = 2X0(ω)I{ω1=H}(ω) + 0.5X0(ω)I{ω1=T}(ω),

X2(ω) = 2X1(ω)I{ω2=H}(ω) + 0.5X1(ω)I{ω2=T}(ω).

The concept of σ-field is needed in order to produce a rigorous mathematical
theory. It further has the crucial role of quantifying the amount of information
we have. For example, σ(X) contains exactly those events A for which we can say
whether ω ∈ A or not, based on the value of X(ω). Interpreting Example 1.1.13 as
corresponding to sequentially tossing coins, the R.V. Xn(ω) = ωn gives the result
of the n-th coin toss in our experiment Ω∞ of infinitely many such tosses. The
σ-field Fn = 2Ωn of Example 1.1.4 then contains exactly the information we have
upon observing the outcome of the first n coin tosses, whereas the larger σ-field Fc

allows us to also study the limiting properties of this sequence. The sequence of
R.V. Xn(ω) is an example of what we call a discrete time stochastic process.

1.2.2. Closure properties of random variables. For the typical measur-
able space with uncountable Ω it is impractical to list all possible R.V. Instead,
we state a few useful closure properties that often help us in showing that a given
function X(ω) is indeed a R.V.
We start with closure with respect to taking limits.

Exercise 1.2.10. Let (Ω,F) be a measurable space and let Xn be a sequence
of random variables on it. Assume that for each ω ∈ Ω, the limit X∞(ω) =
limn→∞Xn(ω) exists and is finite. Prove that X∞ is a random variable on (Ω,F).
Hint: Represent {ω : X∞(ω) > α} in terms of the sets {ω : Xn(ω) > α}. Alterna-
tively, check that X∞(ω) = infm supn≥mXn(ω), or see [Bre92, Proposition A.18]
for a detailed proof.

We turn to deal with numerical operations involving R.V.s, for which we need first
the following definition.

Definition 1.2.11. A function g : R 7→ R is called Borel (measurable) function if
g is a R.V. on (R,B).
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To practice your understanding solve the next exercise, in which you show that
every continuous function g is Borel measurable. Further, every piecewise constant
function g is also Borel measurable (where g piecewise constant means that g has
at most countably many jump points between which it is constant).

Exercise 1.2.12. Recall that a function g : R → R is continuous if g(xn) → g(x)
for every x ∈ R and any convergent sequence xn → x.

(a) Show that if g is a continuous function then for each a ∈ R the set
{x : g(x) ≤ a} is closed. Alternatively, you may show instead that {x :
g(x) < a} is an open set for each a ∈ R.

(b) Use whatever you opted to prove in (a) to conclude that all continuous
functions are Borel measurable.

We can and shall extend the notions of Borel sets and functions to Rn, n ≥ 1
by defining the Borel σ-field on Rn as Bn = σ({[a1, b1] × · · · × [an, bn] : ai, bi ∈
R, i = 1, . . . , n}) and calling g : Rn 7→ R Borel function if g is a R.V. on (Rn,Bn).
Convince yourself that these notions coincide for n = 1 with those of Example 1.1.7
and Definition 1.2.11.

Proposition 1.2.13. If g : Rn → R is a Borel function and X1, . . . , Xn are R.V.
on (Ω,F) then g(X1, . . . , Xn) is also a R.V. on (Ω,F).

If interested in the proof, c.f. [Bre92, Proposition 2.31].
This is the generic description of a R.V. on σ(Y1, . . . , Yn), namely:

Theorem 1.2.14. If Z is a R.V. on (Ω, σ(Y1, . . . , Yn)), then Z = g(Y1, . . . , Yn)
for some Borel function g : Rn → R

For the proof of this result see [Bre92, Proposition A.21].
Here are some concrete special cases.

Exercise 1.2.15. Choosing appropriate g in Proposition 1.2.13 deduce that given
a collection of R.V. {Xn}, the following are also R.V.-s:

αXn with α ∈ R, X1 +X2, X1 ·X2 .

We consider next the effect that a Borel measurable function has on the amount
of information quantified by the corresponding generated σ-fields.

Proposition 1.2.16. For any n < ∞, any Borel function g : Rn → R and R.V.
Y1, . . . , Yn on the same measurable space we have the inclusion σ(g(Y1, . . . , Yn)) ⊆
σ(Y1, . . . , Yn).

In the following direct corollary of Proposition 1.2.16 we observe that the infor-
mation content quantified by the respective generated σ-fields is invariant under
invertible Borel transformations.

Corollary 1.2.17. Suppose R.V. Y1, . . . , Yn and Z1, . . . , Zm defined on the same
measurable space are such that Zk = gk(Y1, . . . , Yn), k = 1, . . . ,m and Yi =
hi(Z1, . . . , Zm), i = 1, . . . , n for some Borel functions gk : Rn → R and hi : R

m →
R. Then, σ(Y1, . . . , Yn) = σ(Z1, . . . , Zm).

Proof. Left to the reader. Do it to practice your understanding of the concept
of generated σ-fields.

Exercise 1.2.18. Provide example of a measurable space, a R.V. X on it, and:
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(a) A function g(x) 6≡ x such that σ(g(X)) = σ(X).
(b) A function f such that σ(f(X)) is strictly smaller than σ(X) and is not

the trivial σ-field {∅,Ω}.
1.2.3. The (mathematical) expectation. A key concept in probability the-

ory is the expectation of a R.V. which we define here, starting with the expectation
of non-negative R.V.-s.

Definition 1.2.19. (see [Bre92, Appendix A.3]). The (mathematical) expec-
tation of a R.V. X(ω) is denoted EX. With xk,n = k2−n and the intervals
Ik,n = (xk,n, xk+1,n] for k = 0, 1, . . ., the expectation of X(ω) ≥ 0 is defined as:

(1.2.1) EX = lim
n→∞

[ ∞∑

k=0

xk,nP({ω : X(ω) ∈ Ik,n})
]
.

For each value of n the non-negative series in the right-hand-side of (1.2.1) is
well defined, though possibly infinite. For any k, n we have that xk,n = x2k,n+1 ≤
x2k+1,n+1. Thus, the interval Ik,n is the union of the disjoint intervals I2k,n+1 and
I2k+1,n+1, implying that

xk,nP(X ∈ Ik,n) ≤ x2k,n+1P(X ∈ I2k,n+1) + x2k+1,n+1P(X ∈ I2k+1,n+1) .

It follows that the series in Definition 1.2.19 are monotone non-decreasing in n,
hence the limit as n→ ∞ exists as well.
We next discuss the two special cases for which the expectation can be computed
explicitly, that of R.V. with countable range, followed by that of R.V. having a
probability density function.

Example 1.2.20. Though not detailed in these notes, it is possible to show that for
Ω countable and F = 2Ω our definition coincides with the well known elementary
definition EX =

∑
ωX(ω)pω (where X(ω) ≥ 0). More generally, the formula

EX =
∑

i xiP({ω : X(ω) = xi}) applies whenever the range of X is a bounded
below countable set {x1, x2, . . .} of real numbers (for example, whenever X ∈ SF).

Here are few examples showing that we may have EX = ∞ while X(ω) < ∞ for
all ω.

Example 1.2.21. Take Ω = {1, 2, . . .}, F = 2Ω and the probability measure corre-
sponding to pk = ck−2, with c = [

∑∞
k=1 k

−2]−1 a positive, finite normalization con-
stant. Then, the random variable X(ω) = ω is finite but EX = c

∑∞
k=1 k

−1 = ∞.
For a more interesting example consider the infinite coin toss space (Ω∞,Fc) of Ex-
ample 1.1.13 with probability of a head on each toss equal to 1/2 independently on
all other tosses. For k = 1, 2, . . . let X(ω) = 2k if ω1 = · · · = ωk−1 = T , ωk = H.
This defines X(ω) for every sequence of coin tosses except the infinite sequence of
all tails, whose probability is zero, for which we set X(TTT · · · ) = ∞. Note that X
is finite a.s. However EX =

∑
k 2

k2−k = ∞ (the latter example is the basis for a
gambling question that give rise to what is known as the St. Petersburg paradox).

Remark. Using the elementary formula EY =
∑N

m=1 cmP(Am) for the simple

function Y (ω) =
∑N

m=1 cmIAm(ω), as in Example 1.2.20, it can be shown that our
definition of the expectation of X ≥ 0 coincides with

(1.2.2) EX = sup { EY : Y ∈ SF, 0 ≤ Y ≤ X }.
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This alternative definition is useful for proving properties of the expectation, but
less convenient for computing the value of EX for any specific X .

Exercise 1.2.22. Write (Ω,F ,P) for a random experiment whose outcome is a
recording of the results of n independent rolls of a balanced six-sided dice (including
their order). Compute the expectation of the random variable D(ω) which counts
the number of different faces of the dice recorded in these n rolls.

Definition 1.2.23. We say that a R.V. X(ω) has a probability density function

fX if P(a ≤ X ≤ b) =
∫ b

a fX(x)dx for every a < b ∈ R. Such density fX must be

a non-negative function with
∫
R
fX(x)dx = 1.

Proposition 1.2.24. When a non-negative R.V. X(ω) has a probability density
function fX , our definition of the expectation coincides with the well known ele-
mentary formula EX =

∫∞
0
xfX(x)dx.

Proof. Fixing X(ω) ≥ 0 with a density fX(x), a finite m and a positive δ, let

Eδ,m(X) =

m∑

n=0

nδ

∫ (n+1)δ

nδ

fX(x)dx .

For any x ∈ [nδ, (n+ 1)δ] we have that x ≥ nδ ≥ x− δ, implying that
∫ (m+1)δ

0

xfX(x)dx =

m∑

n=0

∫ (n+1)δ

nδ

xfX(x)dx ≥ Eδ,m(X)

≥
m∑

n=0

[ ∫ (n+1)δ

nδ

xfX(x)dx − δ

∫ (n+1)δ

nδ

fX(x)dx
]

=

∫ (m+1)δ

0

xfX(x)dx − δ

∫ (m+1)δ

0

fX(x)dx .

Considering m→ ∞ we see that
∫ ∞

0

xfX(x)dx ≥ lim
m→∞

Eδ,m(X) ≥
∫ ∞

0

xfX(x)dx − δ .

Taking δ → 0 the lower bounds converge to the upper bound, hence by (1.2.1),

EX = lim
δ→0

lim
m→∞

Eδ,m(X) =

∫ ∞

0

xfX(x)dx ,

as stated.

Definition 1.2.19 is called also Lebesgue integral of X with respect to the probabil-
ity measure P and consequently denoted EX =

∫
X(ω)dP(ω) (or

∫
X(ω)P(dω)).

It is based on splitting the range of X(ω) to finitely many (small) intervals and
approximating X(ω) by a constant on the corresponding set of ω values for which
X(ω) falls into one such interval. This allows to deal with rather general domain
Ω, in contrast to Riemann’s integral where the domain of integration is split into
finitely many (small) intervals – hence limited to Rd. Even when Ω = [0, 1] it allows
us to deal with measures P for which ω 7→ P([0, ω]) is not smooth (and hence Rie-
mann’s integral fails to exist). Though not done here, if the corresponding Riemann
integral exists, then it necessarily coincides with our Lebesgue integral and with
Definition 1.2.19 (as proved in Proposition 1.2.24 for R.V. X having a density).
We next extend the definition of the expectation from non-negative R.V.-s to
general R.V.-s.
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Definition 1.2.25. For a general R.V. X consider the non-negative R.V.-s X+ =
max(X, 0) and X− = −min(X, 0) (so X = X+−X−), and let E X = E X+−E X−,
provided either E X+ <∞ or E X− <∞.

Definition 1.2.26. We say that a random variable X is integrable (or has finite
expectation) if E|X | <∞, that is, both E X+ <∞ and E X− <∞.

Exercise 1.2.27. Show that R.V. X is integrable if and only if E[|X |I|X|>M ] → 0
when M → ∞.

Remark. Suppose X = Y − Z for some non-negative R.V.-s Y and Z. Then,
necessarily Y = D+X+ and Z = D+X− for someD ≥ 0 and all ω ∈ Ω. With some
work it can be shown that the expectation is linear with respect to the addition
of non-negative R.V. In particular, EY = ED + EX+ and EZ = ED + EX−.
Consequently,

EY −EZ = EX+ −EX− = EX

provided either EY is finite or EZ is finite. We conclude that in this case EX =
EY − EZ. However, it is possible to have X integrable while ED = ∞ resulting
with EY = EZ = ∞.

Example 1.2.28. Using Proposition 1.2.24 it is easy to check that a R.V. X
with a density fX is integrable if and only if

∫∞
−∞ |x|fX(x)dx < ∞, in which case

EX =
∫∞
−∞ xfX(x)dx.

Building on Example 1.2.28 we also have the following well known change of
variables formula for the expectation.

Proposition 1.2.29. If a R.V. X has the probability density function fX and
h : R → R is a Borel measurable function, then the R.V. Y = h(X) is integrable if
and only if

∫∞
−∞ |h(x)|fX(x)dx <∞, in which case EY =

∫∞
−∞ h(x)fX(x)dx.

Definition 1.2.30. A R.V. X with probability density function

fX(x) =
1√
2πσ

exp
(
− (x− µ)2

2σ2

)
, x ∈ R

where µ ∈ R and σ > 0, is called a non-degenerate Gaussian (or Normal) R.V.
with mean µ and variance σ2, denoted by X ∼ N(µ, σ2).

Exercise 1.2.31. Verify that the log-normal random variable Y , that is Y = eX

with X ∼ N(µ, σ2), has expected value EY = exp(µ+ σ2/2).

Exercise 1.2.32.

(a) Find the values of α ∈ R for which fX(x) = cα/(1+ |x|α) is a probability
density function for some cα ∈ R, and for such α write an expression for
cα (no need to compute the integral).

(b) Fixing α ∈ R such that fX(x) is a probability density function, for which
non-negative integer k is the random variable Y = X2k+1 integrable? In
case Y is integrable, compute its expectation EY .

Typically, we cannot compute EX explicitly from the Definition 1.2.19. Instead,
we either use the well known explicit formulas for discrete R.V.s and for R.V.s
having a probability density function, or we appeal to properties of the expectation
listed below.
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Proposition 1.2.33. The expectation has the following properties.
(1). EIA = P(A) for any A ∈ F .

(2). If X(ω) =

N∑

n=1

cnIAn is a simple function, then E X =

N∑

n=1

cnP(An).

(3). If X and Y are integrable R.V. then for any constants α, β the R.V. αX+βY
is integrable and E (αX + βY ) = α(E X) + β(E Y ).
(4). E X = c if X(ω) = c with probability 1.
(5). Monotonicity: If X ≥ Y a.s., then EX ≥ EY . Further, if X ≥ Y a.s. and
EX = EY , then X = Y a.s.

In particular, property (3) of Proposition 1.2.33 tells us that the expectation is a
linear functional on the vector space of all integrable R.V. (denoted below by L1).

Exercise 1.2.34. Using the definition of the expectation, prove the five properties
detailed in Proposition 1.2.33.

Indicator R.V.-s are often useful when computing expectations, as the following
exercise illustrates.

Exercise 1.2.35. A coin is tossed n times with the same probability 0 < p < 1 for
H showing on each toss, independently of all other tosses. A “run” is a sequence of
tosses which result in the same outcome. For example, the sequence HHHTHTTH
contains five runs. Show that the expected number of runs is 1 + 2(n− 1)p(1− p).
Hint: This is [GS01, Exercise 3.4.1].

Since the explicit computation of the expectation is often not possible, we detail
next a useful way to bound one expectation by another.

Proposition 1.2.36 (Jensen’s inequality). Suppose g(·) is a convex function, that
is,

g(λx+ (1− λ)y) ≤ λg(x) + (1− λ)g(y) ∀ x, y ∈ R, 0 ≤ λ ≤ 1.

If X is an integrable R.V. and g(X) is also integrable, then E(g(X)) ≥ g(EX).

Example 1.2.37. Let X be a R.V. such that X(ω) = xIA + yIAc and P(A) = λ.
Then, EX = xP(A) + yP(Ac) = xλ+ y(1−λ). Further, then g(X(ω)) = g(x)IA +
g(y)IAc , so for g convex, E g(X) = g(x)λ+g(y)(1−λ) ≥ g(xλ+y(1−λ)) = g(E X).

The expectation is often used also as a way to bound tail probabilities, based on
the following classical inequality.

Theorem 1.2.38 (Markov’s inequality). Suppose f is a non-decreasing, Borel
measurable function with f(x) > 0 for any x > 0. Then, for any random variable
X and all ε > 0,

P(|X(ω)| > ε) ≤ 1

f(ε)
E(f(|X |)).

Proof. Let A = {ω : |X(ω)| > ε}. Since f is non-negative,

E[f(|X |)] =
∫
f(|X(ω)|)dP(ω) ≥

∫
IA(ω)f(|X(ω)|)dP(ω).

Since f is non-decreasing, f(|X(w)|) ≥ f(ε) on the set A, implying that
∫
IA(ω)f(|X(ω)|)dP(ω) ≥

∫
IA(ω)f(ε)dP(ω) = f(ε)P(A).

Dividing by f(ε) > 0 we get the stated inequality.
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We next specify the three most common instances of Markov’s inequality.

Example 1.2.39. (a). Assuming X ≥ 0 a.s. and taking f(x) = x, Markov’s
inequality is then,

P(X(ω) ≥ ε) ≤ E[X ]

ε
.

(b). Taking f(x) = x2 and X = Y −EY , Markov’s inequality is then,

P(|Y −EY | ≥ ε) = P(|X(ω)| ≥ ε) ≤ E[X2]

ε2
=

Var(Y )

ε2
.

(c). Taking f(x) = eθx for some θ > 0, Markov’s Inequality is then,

P(X ≥ ε) ≤ e−θεE[eθX ] .

In this bound we have an exponential decay in ε at the cost of requiring X to have
finite exponential moments.

Here is an application of Markov’s inequality for f(x) = x2.

Exercise 1.2.40. Show that if E[X2] = 0 then X = 0 almost surely.

We conclude this section with Schwarz inequality (see also Proposition 2.2.4).

Proposition 1.2.41. Suppose Y and Z are random variables on the same proba-
bility space with both E[Y 2] and E[Z2] finite. Then, E|Y Z| ≤

√
EY 2EZ2.

1.3. Convergence of random variables

Asymptotic behavior is a key issue in probability theory and in the study of
stochastic processes. We thus explore here the various notions of convergence of
random variables and the relations among them. We start in Subsection 1.3.1
with the convergence for almost all possible outcomes versus the convergence of
probabilities to zero. Then, in Subsection 1.3.2 we introduce and study the spaces
of q-integrable random variables and the associated notions of convergence in q-
means (that play an important role in the theory of stochastic processes).
Unless explicitly stated otherwise, throughout this section we assume that all R.V.
are defined on the same probability space (Ω,F ,P).

1.3.1. Convergence almost surely and in probability. It is possible to
find sequences of R.V. that have pointwise limits, that is Xn(ω) → X(ω) for all ω.
One such example is Xn(ω) = anX(ω), with non-random an → a for some a ∈ R.
However, this notion of convergence is in general not very useful, since it is sensitive
to ill-behavior of the random variables on negligible sets of points ω. We provide
next the more appropriate (and slightly weaker) alternative notion of convergence,
that of almost sure convergence.

Definition 1.3.1. We say that random variables Xn converge to X almost surely,

denoted Xn
a.s.→ X, if there exists A ∈ F with P(A) = 1 such that Xn(ω) → X(ω)

as n→ ∞ for each fixed ω ∈ A.

Just like the pointwise convergence, the convergence almost surely is invariant
under application of a continuous function.

Exercise 1.3.2. Show that if Xn
a.s.→ X and f is a continuous function then

f(Xn)
a.s.→ f(X) as well.



20 1. PROBABILITY, MEASURE AND INTEGRATION

We next illustrate the difference between convergence pointwise and almost surely
via a special instance of the Law of Large Numbers.

Example 1.3.3. Let Sn = 1
n

∑n
i=1 I{ωi=H} be the fraction of head counts in the

first n independent fair coin tosses. That is, using the measurable space (Ω∞,Fc) of
Example 1.1.13 for which Sn are R.V. and endowing it with the probability measure
P such that for each n, the restriction of P to the event space 2Ωn of first n tosses
gives equal probability 2−n to each of the 2n possible outcomes. In this case, the Law

of Large Numbers (L.L.N.) is the statement that Sn
a.s.→ 1

2 . That is, as n→ ∞, the
observed fraction of head counts in the first n independent fair coin tosses approach
the probability of the coin landing Head, apart from a negligible collection of infinite
sequences of coin tosses. However, note that there are ω ∈ Ω∞ for which the Sn(ω)
does not converge to 1/2. For example, if ωi = H for all i, then Sn = 1 for all n.

In principle, when dealing with almost sure convergence, one should check that the
candidate limit X is also a random-variable. We always assume that the probability
space is complete (as defined next), allowing us to hereafter ignore this technical
point.

Definition 1.3.4. We say that (Ω,F ,P) is a complete probability space if any
subset N of B ∈ F with P(B) = 0 is also in F .
That is, a σ-field is made complete by adding to it all subsets of sets of zero
probability (note that this procedure depends on the probability measure in use).

Indeed, it is possible to show that if Xn are R.V.-s such that Xn(ω) → X(ω) as
n → ∞ for each fixed ω ∈ A and P(A) = 1, then there exists a R.V. X such that

N = {ω : X(ω) 6= X(ω)} is a subset of B = Ac ∈ F and Xn
a.s.→ X. By assuming

that the probability space is complete, we guarantee that N is in F , consequently,

X
a.s.
= X is necessarily also a R.V.

A weaker notion of convergence is convergence in probability as defined next.

Definition 1.3.5. We say that Xn converge to X in probability, denoted Xn →p

X, if P({ω : |Xn(ω)−X(ω)| > ε}) → 0 as n→ ∞, for any fixed ε > 0.

Theorem 1.3.6. We have the following relations:

(a) If Xn
a.s.→ X then Xn →p X.

(b) If Xn →p X, then there exists a subsequence nk such that Xnk

a.s.→ X for k → ∞.

Exercise 1.3.7. Let B = {ω : limn |Xn(ω)−X(ω)| = 0} and fixing ε > 0 consider
the sets Cn = {ω : |Xn(ω)−X(ω)| > ε}, and the increasing sets Ak = [

⋃
n≥k Cn]

c.

To practice your understanding at this point, explain why Xn
a.s.→ X implies that

P(Ak) ↑ 1, why this in turn implies that P(Cn) → 0 and why this verifies part (a)
of Theorem 1.3.6.

We will prove part (b) of Theorem 1.3.6 after developing the Borel-Cantelli lem-
mas, and studying a particular example, showing that convergence in probability
does not imply in general convergence a.s.

Proposition 1.3.8. In general, Xn →p X does not imply that Xn
a.s.→ X.

Proof. Consider the probability space Ω = (0, 1), with Borel σ-field and the
Uniform probability measure U of Example 1.1.11. Suffices to construct an example
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of Xn →p 0 such that fixing each ω ∈ (0, 1), we have that Xn(ω) = 1 for infinitely
many values of n. For example, this is the case when Xn(ω) = 1[tn,tn+sn](ω) with
sn ↓ 0 as n→ ∞ slowly enough and tn ∈ [0, 1−sn] are such that any ω ∈ [0, 1] is in
infinitely many intervals [tn, tn + sn]. The latter property applies if tn = (i− 1)/k
and sn = 1/k when n = k(k − 1)/2 + i, i = 1, 2, . . . , k and k = 1, 2, . . . (plot the
intervals [tn, tn + sn] to convince yourself).

Definition 1.3.9. Let {An} be a sequence of events, and Bn =
∞⋃

k=n

Ak. Define

A∞ =
∞⋂
n=1

Bn, so ω ∈ A∞ if and only if ω ∈ Ak for infinitely many values of k.

Our next result, called the first Borel-Cantelli lemma (see for example [GS01,
Theorem 7.3.10, part (a)]), states that almost surely, Ak occurs for only finitely
many values of k if the sequence P(Ak) converges to zero fast enough.

Lemma 1.3.10 (Borel-Cantelli I). Suppose Ak ∈ F and
∞∑
k=1

P(Ak) < ∞. Then,

necessarily P(A∞) = 0.

Proof. Let bn =
∞∑

k=n

P(Ak), noting that by monotonicity and countable sub-

additivity of probability measures we have for all n that

P(A∞) ≤ P(Bn) ≤
∞∑

k=n

P(Ak) := bn

(see Exercise 1.1.3). Further, our assumption that the series b1 is finite implies that
bn ↓ 0 as n→ ∞, so considering the preceding bound P(A∞) ≤ bn for n → ∞, we
conclude that P(A∞) = 0.

The following (strong) converse applies when in addition we know that the events
{Ak} are mutually independent (for a rigorous definition, see Definition 1.4.35).

Lemma 1.3.11 (Borel-Cantelli II). If {Ak} are independent and
∞∑
k=1

P(Ak) = ∞,

then P(A∞) = 1 (see [GS01, Theorem 7.3.10, part (b)] for the proof).

We next use Borel-Cantelli Lemma I to prove part (b) of Theorem 1.3.6.

Proof of Theorem 1.3.6 part (b). Choose al → 0. By the definition of
convergence in probability there exist nl ↑ ∞ such that P({w : |Xnl

(ω)−X(ω)| >
al}) < 2−l. Define Al = {w : |Xnl

(ω)−X(ω)| > al}. Then P(Al) < 2−l, implying
that

∑
l P(Al) ≤

∑
l 2

−l < ∞. Therefore, by Borel-Cantelli I, P(A∞) = 0. Now
observe that ω /∈ A∞ amounts to ω /∈ Al for all but finitely many values of l,
hence if ω /∈ A∞, then necessarily Xnl

(ω) → X(ω) as l → ∞. To summarize,
the measurable set B := {ω : Xnl

(ω) → X(ω)} contains the set (A∞)c whose
probability is one. Clearly then, P(B) = 1, which is exactly what we set up to
prove.

Here is another application of Borel-Cantelli Lemma I which produces the a.s.
convergence to zero of k−1Xk in case supn E[X2

n] is finite.

Proposition 1.3.12. Suppose E[X2
n] ≤ 1 for all n. Then n−1Xn(ω) → 0 a.s. for

n→ ∞.
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Proof. Fixing δ > 0 let Ak = {ω : |k−1Xk(ω)| > δ} for k = 1, 2, . . .. Then,
by part (b) of Example 1.2.39 and our assumption we have that

P(Ak) = P({ω : |Xk(ω)| > kδ}) ≤ E(X2
k)

(kδ)2
≤ 1

k2
1

δ2
.

Since
∑

k k
−2 < ∞, it then follows by Borel Cantelli I that P(A∞) = 0, where

A∞ = {ω : |k−1Xk(ω)| > δ for infinitely many values of k}. Hence, for any
fixed δ > 0, with probability one k−1|Xk(ω)| ≤ δ for all large enough k, that is,
lim supn→∞ n−1|Xn(ω)| ≤ δ a.s. Considering a sequence δm ↓ 0 we conclude that
n−1Xn → 0 for n→ ∞ and a.e. ω.

A common use of Borel-Cantelli I is to prove convergence almost surely by applying
the conclusion of the next exercise to the case at hand.

Exercise 1.3.13. Suppose X and {Xn} are random variables on the same proba-
bility space.

(a) Fixing ε > 0 and An = {ω : |Xn(ω) −X(ω)| > ε}, show that Cε = {ω :
lim supn |Xn(ω)−X(ω)| > ε} is contained in A∞ of Definition 1.3.9.

(b) Explain why if P(Cε) = 0 for any ε > 0, then Xn
a.s.→ X.

(c) Combining this and Borel-Cantelli I deduce that Xn
a.s.→ X whenever∑∞

n=1 P(|Xn −X | > ε) <∞ for each ε > 0.

We conclude this sub-section with a pair of exercises in which Borel-Cantelli lem-
mas help in finding certain asymptotic behavior for sequences of independent ran-
dom variables.

Exercise 1.3.14. Suppose Tn are independent Exponential(1) random variables
(that is, P(Tn > t) = e−t for t ≥ 0).

(a) Using both Borel-Cantelli lemmas, show that

P(Tk(ω) > α log k for infinitely many values of k) = 1α≤1 .

(b) Deduce that lim supn→∞(Tn/ logn) = 1 almost surely.

Hint: See [Wil91, Example 4.4] for more details.

Exercise 1.3.15. Consider a two-sided infinite sequence of independent random
variables {Xk, k ∈ Z} such that P(Xk = 1) = P(Xk = 0) = 1/2 for all k ∈ Z (for
example, think of independent fair coin tosses). Let ℓm = max{i ≥ 1 : Xm−i+1 =
· · · = Xm = 1} denote the length of the run of 1’s going backwards from time m
(with ℓm = 0 in case Xm = 0). We are interested in the asymptotics of the longest
such run during times 1, 2, . . . , n for large n. That is,

Ln = max{ℓm : m = 1, . . . , n}
= max{m− k : Xk+1 = · · · = Xm = 1 for some m = 1, . . . , n} .

(a) Explain why P(ℓm = k) = 2−(k+1) for k = 0, 1, 2, . . . and any m.
(b) Applying the Borel-Cantelli I lemma for An = {ℓn > (1+ε) log2 n}, show

that for each ε > 0, with probability one, ℓn ≤ (1+ε) log2 n for all n large
enough. Considering a countable sequence εk ↓ 0 deduce that

lim sup
n→∞

Ln

log2 n

a.s.
≤ 1 .
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(c) Fixing ε > 0 let An = {Ln < kn} for kn = [(1− ε) log2 n]. Explain why

An ⊆
mn⋂

i=1

Bc
i ,

for mn = [n/kn] and the independent events Bi = {X(i−1)kn+1 = · · · =
Xikn = 1}. Deduce from it that P(An) ≤ P(Bc

1)
mn ≤ exp(−nε/(2 log2 n)),

for all n large enough.
(d) Applying the Borel-Cantelli I lemma for the events An of part (c), fol-

lowed by ε ↓ 0, conclude that

lim inf
n→∞

Ln

log2 n

a.s.
≥ 1

and consequently, that Ln/(log2 n)
a.s.→ 1.

1.3.2. Lq spaces and convergence in q-mean. Fixing 1 ≤ q < ∞ we
denote by Lq(Ω,F ,P) the collection of random variables X on (Ω,F) for which
E (|X |q) <∞ (and when the probability space (Ω,F ,P) is clear from the context,
we often use the short notation Lq). For example, L1 denotes the space of all
integrable random-variables, and the random variables in L2 are also called square-
integrable .
We start by proving that these spaces are nested in terms of the parameter q.

Proposition 1.3.16. The sequence ||X ||q = [E (|X |q)]1/q is non-decreasing in q.

Proof. Fix q1 > q2 and apply Jensen’s inequality for the convex function
g(y) = |y|q1/q2 and the non-negative random variable Y = |X |q2 , to get that
E
(
|Y |q1/q2

)
≥ (EY )q1/q2 . Taking the 1/q1 power yields the stated result.

Associated with the space Lq is the notion of convergence in q-mean, which we
now define.

Definition 1.3.17. We say that Xn converges in q-mean, or in Lq to X, denoted

Xn
q.m.→ X, if Xn, X ∈ Lq and ||Xn−X ||q → 0 as n→ ∞ (i.e., E (|Xn −X |q) → 0

as n→ ∞.

Example 1.3.18. For q = 2 we have the explicit formula

||Xn −X ||22 = E(X2
n)− 2E(XnX) +E(X2).

Thus, it is often easiest to check convergence in 2-mean.

Check that the following claim is an immediate corollary of Proposition 1.3.16.

Corollary 1.3.19. If Xn
q.m.→ X and q ≥ r, then Xn

r.m.→ X.

Our next proposition details the most important general structural properties of
the spaces Lq.

Proposition 1.3.20. Lq(Ω,F ,P) is a complete, normed (topological) vector space
with the norm || · ||q; That is, αX + βY ∈ Lq whenever X,Y ∈ Lq, α, β ∈ R, with
X 7→ ||X ||q a norm on Lq and if Xn ∈ Lq are such that ||Xn − Xm||q → 0 as

n,m→ ∞ then Xn
q.m.→ X for some X ∈ Lq.

For example, check the following claim.
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Exercise 1.3.21. Fixing q ≥ 1, use the triangle inequality for the norm ‖ · ‖q on

Lq to show that if Xn
q.m.−→ X, then E|Xn|q→E|X |q. Using Jensen’s inequality for

g(x) = |x|, deduce that also EXn → EX. Finally, provide an example to show that
EXn → EX does not necessarily imply Xn → X in L1.

As we prove below by an application of Markov’s inequality, convergence in q-mean
implies convergence in probability (for any value of q).

Proposition 1.3.22. If Xn
q.m.→ X, then Xn →p X.

Proof. For f(x) = |x|q Markov’s inequality (i.e., Theorem 1.2.38) says that

P(|Y | > ε) ≤ ε−qE[|Y |q].
Taking Y = Xn−X gives P(|Xn−X | > ε) ≤ ε−qE[|Xn−X |q]. Thus, if Xn

q.m.→ X
we necessarily also have that Xn →p X as claimed.

Example 1.3.23. The converse of Proposition 1.3.22 does not hold in general.
For example, take the probability space of Example 1.1.11 and the R.V. Yn(ω) =
n1[0,n−1]. Since Yn(ω) = 0 for all n ≥ n0 and some finite n0 = n0(ω), it follows that
Yn(ω) converges a.s. to Y (ω) = 0 and hence converges to zero in probability as well
(see part (a) of Theorem 1.3.6). However, Yn does not converge to zero in q-mean,
even for the easiest case of q = 1 since E[Yn] = nU([0, n−1]) = 1 for all n. The
convergence in q-mean is in general not comparable to a.s. convergence. Indeed, the
above example of Yn(ω) with convergence a.s. but not in 1-mean is complemented
by the example considered when proving Proposition 1.3.8 which converges to zero
in q-mean but not almost surely.

Your next exercise summarizes all that can go wrong here.

Exercise 1.3.24. Give a counterexample to each of the following claims

(a) If Xn → X a.s. then Xn → X in Lq, q ≥ 1;
(b) If Xn → X in Lq then Xn → X a.s.;
(c) If Xn → X in probability then Xn → X a.s.

While neither convergence in 1-mean nor convergence a.s. are a consequence of
each other, a sequence of R.V.s cannot have a 1-mean limit and a different a.s.
limit.

Proposition 1.3.25. If Xn
q.m.→ X and Xn

a.s.→ Y then X = Y a.s.

Proof. It follows from Proposition 1.3.22 that Xn →p X and from part (a)
of Theorem 1.3.6 that Xn →p Y . Note that for any ε > 0, and ω ∈ Ω, if |Y (ω) −
X(ω)| > 2ε then either |Xn(ω)−X(ω)| > ε or |Xn(ω)− Y (ω)| > ε. Hence,

P({ω : |Y (ω)−X(ω)| > 2ε}) ≤ P({ω : |Xn(ω)−X(ω)| > ε})
+ P({ω : |Xn(ω)− Y (ω)| > ε}) .

By Definition 1.3.5, both terms on the right hand side converge to zero as n→ ∞,
hence P({ω : |Y (ω)−X(ω)| > 2ε}) = 0 for each ε > 0, that is X = Y a.s.

Remark. Note that Yn(ω) of Example 1.3.23 are such that EYn = 1 for every n,
but certainly E[|Yn − 1|] 6→ 0 as n → ∞. That is, Yn(ω) does not converge to one

in 1-mean. Indeed, Yn
a.s.→ 0 as n → ∞, so by Proposition 1.3.25 these Yn simply

do not have any 1-mean limit as n→ ∞.
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1.4. Independence, weak convergence and uniform integrability

This section is devoted to independence (Subsection 1.4.3) and distribution (Sub-
section 1.4.1), the two fundamental aspects that differentiate probability from (gen-
eral) measure theory. In the process, we consider in Subsection 1.4.1 the useful
notion of convergence in law (or more generally, that of weak convergence), which
is weaker than all notions of convergence of Section 1.3, and devote Subsection 1.4.2
to uniform integrability, a technical tool which is highly useful when attempting to
exchange the order of a limit and expectation operations.

1.4.1. Distribution, law and weak convergence. As defined next, every
R.V. X induces a probability measure on its range which is called the law of X .

Definition 1.4.1. The law of a R.V. X, denoted PX, is the probability measure
on (R,B) such that PX(B) = P({ω : X(ω) ∈ B}) for any Borel set B.

Exercise 1.4.2. For a R.V. defined on (Ω,F ,P) verify that PX is a probability
measure on (R,B).
Hint: First show that for Bi ∈ B, {ω : X(ω) ∈ ∪iBi} = ∪i{ω : X(ω) ∈ Bi} and
that if Bi are disjoint then so are the sets {ω : X(ω) ∈ Bi}.
Note that the law PX of a R.V. X : Ω −→ R, determines the values of the
probability measure P on σ(X) = σ({ω : X(ω) ≤ α}, α ∈ R). Further, recalling
the remark following Definition 1.2.8, convince yourself that PX carries exactly the
same information as the restriction of P to σ(X). We shall pick this point of view
again when discussing stochastic processes in Section 3.1.
The law of a R.V. motivates the following “change of variables” formula which
is useful in computing expectations (the special case of R.V. having a probability
density function is given already in Proposition 1.2.29).

Proposition 1.4.3. Let X be a R.V. on (Ω,F ,P) and let g be a Borel function
on R. Suppose either g is non-negative or E|g(X)| <∞. Then

(1.4.1) E[g(X)] =

∫

R

g(x)dPX(x) ,

where the integral on the right hand side merely denotes the expectation of the
random variable g(x) on the (new) probability space (R,B,PX).

A good way to practice your understanding of Definition 1.4.1 is by verifying that
if X = Y almost surely, then also PX = PY (that is, any two random variables we
consider to be the same would indeed have the same law).

Exercise 1.4.4. Convince yourself that Proposition 1.4.3 implies that if PX = PY

then also Eh(X) = Eh(Y ) for any bounded Borel function h : R → R and prove the
converse statement: If Eh(X) = Eh(Y ) for any bounded Borel function h : R → R

then necessarily PX = PY .

The next concept we define, the distribution function, is closely associated with
the law PX of the R.V.

Definition 1.4.5. The distribution function FX of a real-valued R.V. X is

FX(α) = P({ω : X(ω) ≤ α}) = PX((−∞, α]) ∀α ∈ R

As we have that P({ω : X(ω) ≤ α}) = FX(α) for the generators {ω : X(ω) ≤ α}
of σ(X), we are not at all surprised by the following proposition.
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Proposition 1.4.6. The distribution function FX uniquely determines the law
PX of X.

Our next example highlights the possible shape of the distribution function.

Example 1.4.7. Consider Example 1.1.4 of n coin tosses, with σ-field Fn = 2Ωn ,
sample space Ωn = {H,T }n, and the probability measure Pn(A) =

∑
ω∈A pω, where

pω = 2−n for each ω ∈ Ωn (that is, ω = {ω1, ω2, · · · , ωn} for ωi ∈ {H,T }),
corresponding to independent, fair, coin tosses. Let Y (ω) = I{ω1=H} measure the
outcome of the first toss. The law of this random variable is,

PY (B) =
1

2
1{0∈B} +

1

2
1{1∈B}

and its distribution function is

FY (α) = PY ((−∞, α]) = Pn(Y (ω) ≤ α) =





1, α ≥ 1
1
2 , 0 ≤ α < 1

0, α < 0

.(1.4.2)

Note that in general σ(X) is a strict subset of the σ-field F (in Example 1.4.7 we
have that σ(Y ) determines the probability measure for the first coin toss, but tells
us nothing about the probability measure assigned to the remaining n− 1 tosses).
Consequently, though the law PX determines the probability measure P on σ(X)
it usually does not completely determine P.

Example 1.4.7 is somewhat generic, in the sense that if the R.V. X is a simple
function, then its distribution function FX is piecewise constant with jumps at the
possible values thatX takes and jump sizes that are the corresponding probabilities.
In contrast, the distribution function of a R.V. with a density (per Definition
1.2.23) is almost everywhere differentiable, that is,

Proposition 1.4.8. A R.V. X has a (probability) density (function) fX if and
only if its distribution function FX can be expressed as

FX(α) =

∫ α

−∞
fX(x)dx ,

for all α ∈ R (where fX ≥ 0 and
∫
fX(x)dx = 1). Such FX is continuous and

almost everywhere differentiable with dFX

dx (x) = fX(x) for almost every x.

Example 1.4.9. The distribution function for the R.V. U(ω) = ω corresponding
to Example 1.1.11 is

FU (α) = P(U ≤ α) = P(U ∈ [0, α]) =





1, α > 1

α, 0 ≤ α ≤ 1

0, α < 0

(1.4.3)

and its density is fU (u) =

{
1, 0 ≤ u ≤ 1

0, otherwise
.

Every real-valued R.V. X has a distribution function but not necessarily a density.
For example X = 0 w.p.1 has distribution function FX(α) = 1α≥0. Since FX is
discontinuous at 0 the R.V. X does not have a density.
The distribution function of any R.V. is necessarily non-decreasing. Somewhat
surprisingly, there are continuous, non-decreasing functions that do not equal to
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the integral of their almost everywhere derivative. Such are the distribution func-
tions of the non-discrete random variables that do not have a density. For the
characterization of all possible distribution functions c.f. [GS01, Section 2.3].

Associated with the law of R.V.-s is the important concept of weak convergence
which we define next.

Definition 1.4.10. We say that R.V.-s Xn converge in law (or weakly) to a R.V.

X, denoted by Xn
L−→ X if FXn(α) → FX(α) as n→ ∞ for each fixed α which is a

continuity point of FX (where α is a continuity point of FX(·) if FX(αk) → FX(α)
whenever αk → α). In some books this is also called convergence in distribution,

and denoted Xn
D−→ X.

The next proposition, whose proof we do not provide, gives an alternative def-
inition of convergence in law. Though not as easy to check as Definition 1.4.10,
this alternative definition applies to more general R.V., whose range is not R, for
example to random vectors Xn with values in Rd.

Proposition 1.4.11. Xn
L−→ X if and only if for each bounded h that is contin-

uous on the range of X we have Eh(Xn) → Eh(X) as n→ ∞.

Remark. Note that FX(α) = PX((−∞, α]) = E[I(−∞,α](X)] involves the discon-
tinuous function h(x) = 1(−∞,α](x). Restricting the convergence in law to continu-
ity points of FX is what makes Proposition 1.4.11 possible.

Exercise 1.4.12. Show that if Xn
L−→ X and f is a continuous function then

f(Xn)
L−→ f(X).

We next illustrate the concept of convergence in law by a special instance of the
Central Limit Theorem (one that is also called the Normal approximation for the
Binomial distribution).

Example 1.4.13. Let Ŝn = 1√
n

∑n
i=1(I{ωi=H}−I{ωi=T}) be the normalized differ-

ence between head and tail counts in n independent fair coin tosses, that is, using

the probability space (Ωn,Fn,Pn) of Example 1.4.7 (convince yourself that Ŝn is a
R.V. with respect to (Ωn,Fn)). In this case, the Central Limit Theorem (C.L.T.)

is the statement that Ŝn
L−→ G, where G is a Gaussian R.V. of zero mean and

variance one, that is, having the distribution function

FG(g) =

∫ g

−∞

e−
x2

2√
2π

dx

(it is not hard to check that indeed E(G) = 0 and E(G2) = 1; such R.V. is some-
times also called standard Normal).

By Proposition 1.4.11, this C.L.T. tells us that E[h(Ŝn)]
n→∞−→ E[h(G)] for each

continuous and bounded function h : R → R, where

Eh(Ŝn) =
∑

ω∈Ωn

2−nh(Ŝn(ω))(1.4.4)

Eh(G) =

∫ ∞

−∞
h(x)

e−
x2

2√
2π

dx ,(1.4.5)
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and the expression (1.4.5) is an instance of Proposition 1.2.29 (as G has a density

fG(g) = (2π)−1/2e−g2/2). So, the C.L.T. allows us to approximate, for all large
enough n, the non-computable sums (1.4.4) by the computable integrals (1.4.5).

Here is another example of convergence in law, this time in the context of extreme
value theory.

Exercise 1.4.14. LetMn = max1≤i≤n {Ti}, where Ti, i = 1, 2, . . . are independent
Exponential(λ) random variables (i.e. FTi(t) = 1− e−λt for some λ > 0, all t ≥ 0
and any i). Find non-random numbers an and a non-zero random variable M∞
such that (Mn − an) converges in law to M∞.
Hint: Explain why FMn−an(t) = (1 − e−λte−λan)n and find an → ∞ for which
(1− e−λte−λan)n converges per fixed t and its limit is strictly between 0 and 1.

If the limit X has a density, or more generally whenever FX is a continuous func-
tion, the convergence in law of Xn to X is equivalent to the pointwise convergence
of the corresponding distribution functions. Such is the case in Example 1.4.13
since G has a density.
As we demonstrate next, in general, the convergence in law of Xn to X is strictly
weaker than the pointwise convergence of the corresponding distribution functions
and the rate of convergence of Eh(Xn) to Eh(X) depends on the specific function
h we consider.

Example 1.4.15. The random variables Xn = 1/n a.s. converge in law to X = 0,
while FXn(α) does not converge to FX(α) at the discontinuity point α = 0 of FX .
Indeed, FXn(α) = 1[1/n,∞)(α) converges to FX(α) = 1[0,∞)(α) for each α 6= 0,
since FX(α) = 0 = FXn(α) for all n and α < 0, whereas for α > 0 and all n large
enough α > 1/n in which case FXn(α) = 1 = FX(α) as well. However, FX(0) = 1
while FXn(0) = 0 for all n.
Further, while Eh(Xn) = h( 1n ) → h(0) = Eh(X) for each fixed continuous func-
tion h, the rate of convergence clearly varies with the choice of h.

In contrast to the preceding example, we provide next a very explicit necessary
and sufficient condition for convergence in law of integer valued random variables.

Exercise 1.4.16. Let Xn, 1 ≤ n ≤ ∞ be non-negative integer valued R.V.-s. Show
that Xn → X∞ in law if and only if P(Xn = m) →n→∞ P(X∞ = m) for all m.

The next exercise provides a few additional examples as well as the dual of Exercise
1.4.16 when each of the random variables Xn, 1 ≤ n ≤ ∞ has a density.

Exercise 1.4.17.

(a) Give an example of random variables X and Y on the same probability
space, such that PX = PY while P({ω : X(ω) 6= Y (ω)}) = 1.

(b) Give an example of random variables Xn
L→ X∞ where each Xn has a

probability density function, but X∞ does not have such.
(c) Suppose Zp denotes a random variable with a Geometric distribution of

parameter 1 > p > 0, that is P(Zp = k) = p(1 − p)k−1 for k = 1, 2, . . ..
Show that P(pZp > t) → e−t as p → 0, for each t ≥ 0 and deduce that
pZp converge in law to the Exponential random variable T , whose density
is fT (t) = e−t1t≥0.
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(d) Suppose R.V.-s Xn and X∞ have (Borel measurable) densities fn(s)
and f∞(s), respectively, such that fn(s) → f∞(s) as n → ∞, for each
fixed s ∈ R and further that f∞ is strictly positive on R. Let gn(s) =
2max(0, 1− fn(s)/f∞(s)). Explain why (recall Definition 1.2.23)

∫

R

|fn(s)− f∞(s)|ds =
∫

R

gn(s)f∞(s)ds,

why it follows from Corollary 1.4.28 that
∫
R
gn(s)f∞(s)ds → 0 as n→ ∞

and how you deduce from this that Xn
L→ X∞.

Our next proposition states that convergence in probability implies the conver-
gence in law. This is perhaps one of the reasons we call the latter also weak con-
vergence.

Proposition 1.4.18. If Xn →p X, then Xn
L−→ X.

The convergence in law does not require Xn to be defined in the same probability

space (indeed, in Example 1.4.13 we have Ŝn in a different probability space for
each n. Though we can embed all of these R.V.-s in the same larger measurable
space (Ω∞,Fc) of Example 1.1.13, we still do not see their limit in law G in Ω∞).
Consequently, the converse of Proposition 1.4.18 cannot hold. Nevertheless, as we
state next, when the limiting R.V. is a non-random constant, the convergence in
law is equivalent to convergence in probability.

Proposition 1.4.19. If Xn
L−→ X and X is a non-random constant (almost

surely), then Xn →p X as well.

We define next a natural extension of the convergence in law, which is very con-
venient for dealing with the convergence of stochastic processes.

Definition 1.4.20. We say that a sequence of probability measures Qn on a topo-
logical space S (i.e. a set S with a notion of open sets, or topology) and its Borel
σ-field BS (= the σ-field generated by the open subsets of S), converges weakly to a
probability measure Q if for each fixed h continuous and bounded on S,∫

S

h(ω)dQn(ω) −→
∫

S

h(ω)dQ(ω) ,

as n→ ∞ (here
∫
S
hdQ denotes the expectation of the R.V. h(ω) in the probability

space (S,BS, Q), while
∫
S
hdQn corresponds to the space (S,BS, Qn)). We shall use

Qn ⇒ Q to denote weak convergence.

Example 1.4.21. In particular, Xn
L−→ X if and only if PXn ⇒ PX . That is,

when ∫

R

h(ξ)dPXn(ξ) →
∫

R

h(ξ)dPX(ξ),

for each fixed h : R → R continuous and bounded.

1.4.2. Uniform integrability, limits and expectation. Recall that either
convergence a.s. or convergence in q-mean imply convergence in probability, which
in turn gives convergence in law. While we have seen that a.s. convergence and
convergence in q-means are in general non-comparable, we next give an integrability
condition that together with convergence in probability implies convergence in q-
mean.
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Definition 1.4.22. A collection of R.V.-s {Xα, α ∈ I} is called Uniformly Inte-
grable (U.I.) if

lim
M→∞

sup
α

E[|Xα|I|Xα|>M ] = 0 .

Theorem 1.4.23. (for proof see [GS01, Theorem 7.10.3]): If Xn →p X and |Xn|q
are U.I., then Xn

q.m.−→ X.

We next detail a few special cases of U.I. collections of R.V.-s, showing among
other things that any finite or uniformly bounded collection of integrable R.V.-s is
U.I.

Example 1.4.24. By Exercise 1.2.27 any X ∈ L1 is U.I. Applying the same
reasoning, if |Xα| ≤ Y for all α and some R.V. Y such that EY < ∞, then Xα

are U.I. (indeed, in this case, |Xα|I|Xα|>M ≤ Y IY >M , hence E[|Xα|I|Xα|>M ] ≤
E[Y IY >M ], which does not depend on α and as you have shown in Exercise 1.2.27,
converges to zero when M → ∞). In particular, a collection of R.V.-s Xα is U.I.
when for some non-random C < ∞ and all α we have |Xα| ≤ C (take Y = C in
the preceding, or just try M > C in Definition 1.4.22). Other such examples are
the U.I. collection of R.V. {cαY }, where Y ∈ L1 and cα ∈ [−1, 1] are non-random,
and the U.I. collection Xα for countable I such that E(supα |Xα|) < ∞ (just take
Y = supα |Xα|). Finally, any finite collection of R.V.-s Xi, i = 1, . . . , k in L1

is U.I. (simply take Y = |X1| + |X2| + · · · + |Xk| so Y ∈ L1 and |Xi| ≤ Y for
i = 1, . . . , k).

In contrast, here is a concrete example of a sequence of R.V. Xn which is not U.I.
Consider the probability space (Ω∞,Fc,P) of fair coin tosses, as in Example 1.3.3
and let Xn(ω) = inf{i > n : ωi = H}, that is, the index of the first toss after the
n-th one, for which the coin lands Head. Indeed, if n ≥ M then Xn > n ≥ M ,
hence E[XnIXn>M ] = E[Xn] > n, implying that {Xn} is not U.I.
In the next exercise you provide a criterion for U.I. that is very handy and often
used by us (in future chapters).

Exercise 1.4.25. A collection of R.V. {Xα : α ∈ I} is uniformly integrable if
Ef(|Xα|) ≤ C for some finite C and all α ∈ I, where f ≥ 0 is any function such
that f(x)/x→ ∞ as x→ ∞. Verify this statement for f(x) = |x|q, q > 1.

Note that in Exercise 1.4.25 we must have q > 1, and thus supα E|Xα| < ∞
alone is not enough for the collection to be U.I. The following lemma shows what
is required in addition; for a proof see [GS01, Lemma 7.10.6].

Lemma 1.4.26. A collection of R.V. {Xα : α ∈ I} is uniformly integrable if and
only if both:

(a) supα E|Xα| <∞,
(b) for any ε > 0, there exists a δ > 0 such that E(|Xα|IA) < ε for all α ∈ I

and events A for which P(A) < δ.

We now address the technical but important question of when can one exchange
the order of limits and expectation operations. To see that this is not always
possible, consider the R.V. Yn(ω) = n1[0,n−1] of Example 1.3.23 (defined on the
probability space (R,B, U)). Since E[YnIYn>M ] = 1n>M , it follows that
supn E[YnIYn>M ] = 1 for all M , hence Yn are not a U.I. collection. Indeed, Yn → 0
a.s. while limn→∞ E(Yn) = 1 > 0.
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In view of Example 1.4.24, our next result is merely a corollary of Theorem 1.4.23.

Theorem 1.4.27 (Dominated Convergence). If there exists a random variable Y
such that EY <∞, |Xn| ≤ Y for all n and Xn →p X, then EXn−→EX.

Considering non-random Y we get the following corollary,

Corollary 1.4.28 (Bounded Convergence). Suppose |Xn| ≤ C for some finite
constant C and all n. If Xn →p X then also EXn → EX.

In case of monotone (upward) convergence of non-negative R.V. Xn to X we can
exchange the order of limit and expectation even when X is not integrable, that is,

Theorem 1.4.29 (Monotone Convergence). If Xn ≥ 0 and Xn(ω) ↑ X(ω) for a.e.
ω, then EXn ↑ EX. This applies even if X(ω) = ∞ for some ω ∈ Ω.

Suppose Xn ≥ 0 and Xn(ω) ↓ X(ω) for a.e. ω. If we assume in addition that
EX1 < ∞, then we get the convergence EXn ↓ EX already from the dominated
convergence theorem. However, considering random variable Z ≥ 0 such that
EZ = ∞ and Xn(ω) = n−1Z(ω) ↓ 0 as n → ∞, we see that unlike monotonicity
upwards, the monotonicity downwards does not really help much in convergence of
expectations.
To practice your understanding, solve the following exercises.

Exercise 1.4.30. Use Monotone Convergence to show that

E(

∞∑

n=1

Yn) =

∞∑

n=1

EYn ,

for any sequence of non-negative R.V. Yn. Deduce that if X ≥ 0 and An are disjoint
sets with P(

⋃
nAn) = 1, then

E(X) =

∞∑

n=1

E(XIAn) .

Further, show that this applies also for any X ∈ L1.

Exercise 1.4.31. Prove Proposition 1.4.3, using the following four steps.

(a) Verify that the identity (1.4.1) holds for indicator functions g(x) = IB(x),
B ∈ B.

(b) Using linearity of the expectation, check that this identity holds whenever
g(x) is a (non-negative) simple function on (R,B).

(c) Combine the definition of the expectation via the identity (1.2.2) with
Monotone Convergence to deduce that (1.4.1) is valid for any non-negative
Borel function g(x).

(d) Recall that g(x) = g(x)+ − g(x)− for g(x)+ = max(g(x), 0) and g(x)− =
−min(g(x), 0) non-negative Borel functions. Thus, using Definition 1.2.25
conclude that (1.4.1) holds whenever E|g(X)| <∞.

Remark. The four step procedure you just employed is a routine way for verifying
identities about expectations. Not surprisingly it is called the standard machine.

As we next demonstrate, multiplication by an integrable positive random variable
results with a change of measure that produces an equivalent probability measure.
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Exercise 1.4.32 (Change of measure). Suppose Z ≥ 0 is a random variable on
(Ω,F ,P) such that EZ = 1.

(a) Show that P̃ : F → R given by P̃(A) = E[ZIA] is a probability measure
on (Ω,F).

(b) Denoting by Ẽ[X ] the expectation of a non-negative random variable X

on (Ω,F) under the probability measure P̃, show that ẼX = E[XZ].
Hint: Following the procedure outlined in Exercise 1.4.31, verify this iden-
tity first for X = IA, then for non-negative X ∈ SF, combining (1.2.2)
and Monotone Convergence to extend it to all X ≥ 0.

(c) Similarly, show that if Z > 0 then also EY = Ẽ[Y/Z] for any random

variable Y ≥ 0 on (Ω,F). Deduce that in this case P and P̃ are equiv-
alent probability measures on (Ω,F), that is P(A) = 0 if and only if

P̃(A) = 0.

Here is an application of the preceding exercise, where by a suitable explicit change
of measure you change the law of a random variable W without changing the
function W : Ω → R.

Exercise 1.4.33. Suppose a R.V. W on a probability space (Ω,F ,P) has the
N(µ, 1) law of Definition 1.2.30.

(a) Check that Z = exp(−µW + µ2/2) is a positive random variable with
EZ = 1.

(b) Show that under the corresponding equivalent probability measure P̃ of
Exercise 1.4.32 the R.V. W has the N(0, 1) law.

1.4.3. Independence. We say that two events A,B ∈ F are P-mutually
independent if P(A ∩ B) = P(A)P(B). For example, suppose two fair dice are
thrown. The events E1 = {Sum of two is 6} and E2 = {first die is 4} are then not
independent since

P(E1) = P({(1, 5) (2, 4) (3, 3) (4, 2) (5, 1)}) = 5

36
, P(E2) = P({ω : ω1 = 4}) = 1

6

and

P(E1 ∩ E2) = P({(4, 2)}) = 1

36
6= P(E1)P(E2).

However, one can check that E2 and E3 = {sum of dice is 7} are independent.
In the context of independence we often do not explicitly mention the probability
measure P. However, events A,B ∈ F may well be independent with respect to
one probability measure on (Ω,F) and not independent with respect to another.

Exercise 1.4.34. Provide a measurable space (Ω,F), two probability measures
P and Q on it and events A and B that are P-mutually independent but not Q-
mutually independent.

More generally we define the independence of events as follows.

Definition 1.4.35. Events Ai ∈ F are P-mutually independent if for any L <∞
and distinct indices i1, i2, . . . , iL,

P(Ai1 ∩ Ai2 ∩ · · · ∩ AiL) =
L∏

k=1

P(Aik ).
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In analogy with the mutual independence of events we define the independence of
two R.V.-s and more generally, that of two σ-fields.

Definition 1.4.36. Two σ-fields H, G ⊆ F are P-independent if

P(G ∩H) = P(G)P(H), ∀G ∈ G, ∀H ∈ H
(see [Bre92, Definition 3.1] for the independence of more than two σ-fields). The
random vectors (X1, . . . , Xn) and (Y1, . . . , Ym) are independent, if the corresponding
σ-fields σ(X1, . . . , Xn) and σ(Y1, . . . , Ym) are independent (see [Bre92, Definition
3.2] for the independence of k > 2 random vectors).

To practice your understanding of this definition, solve the following exercise.

Exercise 1.4.37.

(a) Verify that if σ-fields G and H are P-independent, G̃ ⊆ G and H̃ ⊆ H,

then also G̃ and H̃ are P-independent.
(b) Deduce that if random vectors (X1, . . . , Xn) and (Y1, . . . , Ym) are P-

independent, then so are the R.V. h(X1, . . . , Xn) and g(Y1, . . . , Ym) for
any Borel functions h : Rn → R and g : Rm → R.

Beware that pairwise independence (of each pair Ak, Aj for k 6= j), does not imply
mutual independence of all the events in question and the same applies to three or
more random variables. Here is an illustrating example.

Exercise 1.4.38. Consider the sample space Ω = {0, 1, 2}2 with probability mea-
sure on (Ω, 2Ω) that assigns equal probability (i.e. 1/9) to each possible value of
ω = (ω1, ω2) ∈ Ω. Then, X(ω) = ω1 and Y (ω) = ω2 are independent R.V.
each taking the values {0, 1, 2} with equal (i.e. 1/3) probability. Define Z0 = X,
Z1 = (X + Y )mod3 and Z2 = (X + 2Y )mod3. Show that Z0 is independent of Z1,
Z0 is independent of Z2, Z1 is independent of Z2, but if we know the value of Z0

and Z1, then we also know Z2.

See the next exercise for more in this direction.

Exercise 1.4.39. Provide an example of three events A1, A2, A3 that are not P-
mutually independent even though P(Ai ∩ Aj) = P(Ai)P(Aj) for any i 6= j and
an example of three events B1, B2, B3 that are not P-mutually independent even
though P(B1 ∩B2 ∩B3) = P(B1)P(B2)P(B3).

We provide now an alternative criterion for independence of two random vectors
which is often easier to verify than Definition 1.4.36, and which is to be expected
in view of Theorem 1.2.14.

Proposition 1.4.40. For any finite n,m ≥ 1, two random vectors (X1, . . . , Xn)
and (Y1, . . . , Ym) with values in Rn and Rm, respectively, are independent if and
only if

(1.4.6) E(h(X1, . . . , Xn)g(Y1, . . . , Ym)) = E(h(X1, . . . , Xn))E(g(Y1, . . . , Ym)),

for all bounded, Borel measurable functions g : Rm → R and h : Rn → R.

Definition 1.4.41. Square-integrable random variables X and Y defined on the
same probability space are called uncorrelated if E(XY ) = E(X)E(Y ).

In particular, independent random variables are uncorrelated, but the converse is
not necessarily true.
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Proposition 1.4.42. Any two square-integrable independent random variables X
and Y are also uncorrelated.

Exercise 1.4.43. Give an example of a pair of R.V. that are uncorrelated but not
independent.

The different definitions of independence we provided are consistent. For example,
if the events A,B ∈ F are independent, then so are IA and IB . Indeed, we need to
show that σ(IA) = {∅,Ω, A,Ac} and σ(IB) = {∅,Ω, B,Bc} are independent. Since
P(∅) = 0 and ∅ is invariant under intersections, whereas P(Ω) = 1 and all events
are invariant under intersection with Ω, it suffices to consider G ∈ {A,Ac} and
H ∈ {B,Bc}. We check independence first for G = A and H = Bc. Noting that A
is the union of the disjoint events A ∩B and A ∩Bc we have that

P(A ∩Bc) = P(A)−P(A ∩B) = P(A)[1 −P(B)] = P(A)P(Bc) ,

where the middle equality is due to the assumed independence of A and B. The
proof for all other choices of G and H is very similar.

Remark. In this context verify that for any two measurable subsets A and B of Ω,
if the indicator random variables IA and IB are uncorrelated, then they must also
be independent of each other (in contrast with the more general case, see Exercise
1.4.43). The key to this is the fact that EIAIB = P(A ∩B).

Independence helps when computing expectations. For example:

Exercise 1.4.44. Let ξ1, ξ2, ξ3, . . . be a sequence of square-integrable, non-negative,
independent R.V.-s and N(ω) ∈ {0, 1, 2, . . .} a R.V. on the same probability space
(Ω,F ,P) such that N is independent of ξm and E(ξm) = E(ξ1) for any m. Show
that the non-negative R.V.

X(ω) =

N(ω)∑

i=1

ξi(ω) =

∞∑

i=1

ξi(ω)IN(ω)≥i

Has the expectation

E(X) =
∞∑

i=1

E(ξi)P(N ≥ i) = E(ξ1)E(N) .



CHAPTER 2

Conditional expectation and Hilbert spaces

The most important concept in probability theory is the conditional expectation to
which this chapter is devoted. In contrast with the elementary definition often used
for a finite or countable sample space, the conditional expectation, as defined in
Section 2.1, is itself a random variable. A brief introduction to the theory of Hilbert
spaces is provided in Section 2.2. This theory is used here to show the existence
of the conditional expectation. It is also applied in Section 5.1 to construct the
Brownian motion, one of the main stochastic processes of interest to us. Section 2.3
details the important properties of the conditional expectation. Finally, in Section
2.4 we represent the conditional expectation as the expectation with respect to the
random regular conditional probability distribution.

2.1. Conditional expectation: existence and uniqueness

After reviewing in Subsection 2.1.1 the elementary definition of the conditional
expectation for discrete random variables we provide a definition that applies to
any square-integrable R.V. We then show in Subsection 2.1.2 how to extend it to
the general case of integrable R.V. and to the conditioning on any σ-field.

2.1.1. Conditional expectation in the discrete and L2 cases. Suppose
the random variables X and Y take on finitely many values. Then, we know that
E(X |Y = y) =

∑
x xP(X = x|Y = y), provided P(Y = y) > 0. Moreover, by the

formula P(A|B) = P(A∩B)
P(B) , this amounts to

E(X |Y = y) =
∑

x

x
P(X = x, Y = y)

P(Y = y)

With f(y) denoting the function E[X |Y = y], we may now consider the random
variable E(X |Y ) = f(Y ), which we call the Conditional Expectation (in short C.E.)
of X given Y . For a general R.V. X we similarly define

f(y) := E(X |Y = y) =
E(XI{Y=y})

P(Y = y)

for any y such that P(Y = y) > 0 and let E(X |Y ) = f(Y ) (see [GS01, Definition
3.7.3] for a similar treatment).

Example 2.1.1. For example, if R.V. X = ω1 and Y = ω2 for the probability
space F = 2Ω, Ω = {1, 2}2 and

P(1, 1) = .5, P(1, 2) = .1, P(2, 1) = .1, P(2, 2) = .3,

then,

P(X = 1|Y = 1) =
P(X = 1, Y = 1)

P(Y = 1)
=

5

6

35
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implying that P(X = 2|Y = 1) = 1
6 , and

E(X |Y = 1) = 1 · 5
6
+ 2 · 1

6
=

7

6

Likewise, check that E(X |Y = 2) = 7
4 , hence E(X |Y ) = 7

6IY =1 +
7
4IY =2.

This approach works also for Y that takes countably many values. However, it
is limited to this case, as it requires us to have E(I{Y =y}) = P(Y = y) > 0.
To bypass this difficulty, observe that Z = E(X |Y ) = f(Y ) as defined before,
necessarily satisfies the identity

0 = E[(X − f(y))I{Y =y}] = E[(X − Z)I{Y =y}]

for any y ∈ R. Further, here also E[(X − Z)I{Y ∈B}] = 0 for any Borel set B, that
is E[(X − Z)IA] = 0 for any A ∈ σ(Y ). As we see in the sequel, demanding that
the last identity holds for Z = f(Y ) provides us with a definition of Z = E(X |Y )
that applies for any two R.V. X and Y on the same probability space (Ω,F ,P),
subject only to the mild condition that E(|X |) < ∞ (For more details and proofs,
see [GS01, Section 7.9]).
To gain better insight into this, more abstract definition, consider first X ∈
L2(Ω,F ,P) and the optimization problem

(2.1.1) d2 = inf{E[(X −W )2] :W ∈ HY }
for HY = L2(Ω, σ(Y ),P). From the next proposition we see that the conditional
expectation is the solution of this optimization problem.

Proposition 2.1.2. There exists a unique (a.s.) optimal Z ∈ HY such that
d2 = E[(X − Z)2]. Further, the optimality of Z is equivalent to the orthogonality
property

(2.1.2) E[(X − Z)V ] = 0, ∀ V ∈ HY .

Proof. We state without proof the existence of Z ∈ HY having the orthogo-
nality property (2.1.2), as we shall later see that this is a consequence of the more
general theory of Hilbert spaces.
Suppose that both Z1, Z2 ∈ HY are such that E[(X − Z1)V ] = 0 and E[(X −
Z2)V ] = 0 for all V ∈ HY . Taking the difference of the two equations, we see that
E[(Z1−Z2)V ] = 0 for any such V . Take V = Z1−Z2 ∈ HY to getE[(Z1−Z2)

2] = 0,

so Z1
a.s.
= Z2.

Suppose now that W,Z ∈ HY and also that E[(X − Z)V ] = 0 for any V ∈ HY .
It is easy to check the identity

(2.1.3)
1

2
{[(X −W )2]− [(X − Z)2]} = (X − Z)(Z −W ) +

1

2
(Z −W )2 ,

which holds for any X,W,Z. Considering V = Z −W ∈ HY , and taking expecta-
tion, we get by linearity of the expectation that

E[(X −W )2]−E[(X − Z)2] = E(V 2) ≥ 0,

with equality if only if V = 0, that is, W = Z a.s. Thus, Z ∈ HY that satisfies
(2.1.2) is the a.s. unique minimizer of E[(X −W )2] among all W ∈ HY .
We finish the proof by demonstrating the converse. Namely, suppose Z ∈ HY is
such that E[(X −W )2] ≥ E[(X − Z)2] for all W ∈ HY . Taking the expectation in
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(2.1.3), we thus have that

E[(X − Z)(Z −W )] +
1

2
E[(Z −W )2] ≥ 0 .

Fixing a non-random y ∈ R and a R.V. V ∈ HY , we apply this inequality for
W = Z−yV ∈ HY to get g(y) = yE[(X−Z)V ]+ 1

2y
2E[V 2] ≥ 0. Since E[V 2] <∞,

the requirement g(y) ≥ 0 for all y ∈ R implies that g′(0) = E[(X − Z)V ] = 0.
As V ∈ HY is arbitrary, we have just verified the stated orthogonality property
(2.1.2).

Definition 2.1.3. For X ∈ L2(Ω,F ,P) the conditional expectation Z = E(X |Y )
is the unique R.V. in HY satisfying (2.1.2). By Proposition 2.1.2 this is also the
minimizer of E[(X −W )2] among all W ∈ HY .

To get some intuition into Definition 2.1.3, consider the special case of Y ∈ SF
and suppose that Y =

∑n
i=1 yiIAi for some n < ∞, distinct yi and disjoint sets

Ai = {ω : Y (ω) = yi} such that P(Ai) > 0 for all i.
Recall Theorem 1.2.14 that any W ∈ HY is of the form W = g(Y ) for some
Borel function g such that E(g(Y )2) < ∞. As Y (ω) takes only finitely many
possible values {y1, . . . , yn}, every function g(·) on this set is bounded (hence
square-integrable) and measurable. Further, the sets Ai are disjoint, resulting with
g(Y ) =

∑n
i=1 g(yi)IAi . Hence, in this case, HY = {∑n

i=1 viIAi : vi ∈ R} and the
optimization problem (2.1.1) is equivalent to

d2 = inf
vi

E[(X −
n∑

i=1

viIAi)
2] = E(X2) + inf

vi

{ n∑

i=1

P(Ai)v
2
i − 2

n∑

i=1

viE[XIAi ]
}
,

the solution of which is obtained for vi = E[XIAi ]/P(Ai). We conclude that

(2.1.4) E(X |Y ) =
∑

i

E[XIY=yi ]

P(Y = yi)
IY =yi ,

in agreement with our first definition for the conditional expectation in case of
conditioning upon the value of a discrete random variable.

Exercise 2.1.4. Let Ω = {a, b, c, d}, with event space F = 2Ω and probability
measure such that P({a}) = 1/2, P({b}) = 1/4, P({c}) = 1/6 and P({d}) = 1/12.

(a) Find σ(IA), σ(IB) and σ(IA, IB) for the subsets A = {a, d} and B =
{b, c, d} of Ω.

(b) Let H = L2(Ω, σ(IB),P). Find the conditional expectation E(IA|IB) and
the value of d2 = inf{E[(IA −W )2] :W ∈ H}.

2.1.2. Conditional expectation: the general case. You should verify that
the conditional expectation of Definition 2.1.3 is a R.V. on the measurable space
(Ω,FY ) whose dependence on Y is only via FY . This is consistent with our inter-
pretation of FY as conveying the information content of the R.V. Y . In particular,
E[X |Y ] = E[X |Y ′] whenever FY ′ = FY (for example, if Y ′ = h(Y ) for some invert-
ible Borel function h). By this reasoning we may and shall often use the notation
E (X | FY ) for E(X |Y ), and next define E(X |G) for X ∈ L1(Ω,F ,P) and arbitrary
σ-field G ⊆ F . To this end, recall that Definition 2.1.3 is based on the orthogonality
property (2.1.2). As we see next, in the general case where X is only in L1, we
have to consider the smaller class of almost surely bounded R.V. V on (Ω,G), in
order to guarantee that the expectation of XV is well defined.
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Definition 2.1.5. The conditional expectation of X ∈ L1(Ω,F ,P) given a σ-field
G ⊆ F , is the R.V. Z on (Ω,G) such that

(2.1.5) E [(X − Z) IA] = 0, ∀ A ∈ G
and E(X |Y ) corresponds to the special case of G = FY in (2.1.5).

As we state next, in the special case of X ∈ L2(Ω,F ,P) this definition coincides
with the C.E. we get by Definition 2.1.3.

Theorem 2.1.6. The C.E. of integrable R.V. X given any σ-field G exists and is
a.s. unique. That is, there exists Z measurable on G that satisfies (2.1.5), and if

Z1 and Z2 are both measurable on G satisfying (2.1.5), then Z1
a.s
= Z2.

Further, if in addition E(X2) <∞, then such Z also satisfies

E [(X − Z) V ] = 0, ∀ V ∈ L2(Ω,G,P),

hence for G = FY the R.V. Z coincides with that of Definition 2.1.3.

Proof. (omit at first reading) We only outline the key ideas of the proof (for
a detailed treatment see [GS01, Theorem 7.9.26]).

Step 1. Given X ≥ 0, EX <∞, we define Xn(ω) = min{X(ω), n}. Then, Xn ↑ X
and Xn is bounded for each n. In particular, Xn ∈ L2 so the C.E. E[Xn|G] exists
by orthogonal projection in Hilbert spaces (see Theorem 2.2.12, in analogy with
Proposition 2.1.2). Further, the R.V. E[Xn|G] are non-decreasing in n, so we define
the C.E. of X given G as

(2.1.6) E[X |G] := lim
n→∞

E[Xn|G].

One then checks that

(1). The limit in (2.1.6) exists and is almost surely finite;

(2). This limit does not depend on the specific sequence Xn we have chosen in the
sense that if Yn ↑ X and E(Yn

2) <∞ then limn→∞ E[Yn|G] = E[X |G];
(3). The R.V. obtained by (2.1.6) agrees with Definition 2.1.5, namely, it satisfies
the orthogonality property (2.1.5).

Step 2. If E|X | <∞ then E[X |G] = E[X+|G]−E[X−|G].
We often use the notation P(A|G) for E(IA|G) and any A ∈ F . The reason for this
is made clear in Section 2.4 when we relate the C.E. with the notion of (regular)
conditional probability.
We detail in Section 2.3 few of the many properties of the C.E. that are easy to
verify directly from Definition 2.1.5. However, some properties are much easier to
see when considering Definition 2.1.3 and the proof of Theorem 2.1.6. For example,

Proposition 2.1.7. If X is a non-negative R.V., then a.s. E(X |G) ≥ 0.

Proof. Suppose first that X ∈ L2 is non-negative and Z ∈ L2(Ω,G,P). Note
that Z+ = max(Z, 0) ∈ L2(Ω,G,P) as well. Moreover, in this case (X − Z+)

2 ≤
(X−Z)2 a.s. hence also E[(X−Z+)

2] ≤ E[(X−Z)2]. Consequently, if Z = E(X |G),
then by Definition 2.1.3 Z = Z+ a.s., that is, Z ≥ 0 a.s. Following the proof of
Theorem 2.1.6 we see that if X ∈ L1 is non-negative then so are Xn ∈ L2. We have
already seen that E[Xn|G] are non-negative, and so the same applies for their limit
E[X |G].
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As you show next, identities such as (2.1.4) apply for conditioning on any σ-field
generated by a countable partition.

Exercise 2.1.8. Let G = σ({Bi}) for a countable, F-measurable partition B1, B2, . . .
of Ω into sets of positive probability. That is, Bi ∈ F , ∪iBi = Ω, Bi∩Bj = ∅, i 6= j
and P(Bi) > 0.

(a) Show that G ∈ G if and only if G is a union of sets from {Bi}.
(b) Suppose Y is a random variable on (Ω,G). Show that Y (ω) =

∑
i ciIBi(ω)

for some non-random ci ∈ R.
(c) Let X be an integrable random variable on (Ω,F ,P). Show that E(X |G) =∑

i ciIBi with ci = E(XIBi)/P(Bi).
(d) Deduce that for an integrable random variable X and B ∈ F such that

0 < P(B) < 1,

E(X |σ(B)) =
E(IBX)

P(B)
IB +

E(IBcX)

P(Bc)
IBc ,

and in particular E(IA|IB) = P(A|B)IB + P(A|Bc)IBc for any A ∈ F
(where P(A|B) = P(A ∩B)/P(B)).

2.2. Hilbert spaces

The existence of the C.E. whenX ∈ L2 is a consequence of the more general theory
of Hilbert spaces. We embark in this section on an exposition of this general theory,
with most definitions given in Subsection 2.2.1 and their consequences outlined in
Subsection 2.2.2. The choice of material is such that we state everything we need
either for the existence of the C.E. or for constructing the Brownian motion in
Section 5.1.

2.2.1. Definition of Hilbert spaces and subspaces. We start with the
definition of a linear vector space.

Definition 2.2.1. A linear vector space H = {h} is a collection of vectors h, for
which addition and scalar multiplication are well-defined:
h1 + h2 ∈ H - the addition of h1 ∈ H, h2 ∈ H;
αh ∈ H - scalar multiplication ∀α ∈ R, h ∈ H;
and having the properties:
(i) α(h1 + h2) = αh1 + αh2;
(ii) (α+ β)h = αh+ βh;
(iii) α(βh) = (αβ)h;
(iv) 1h = h.

The following examples are used throughout for illustration.

Example 2.2.2. The space R3 is a linear vector space with addition and scalar
multiplication




x1
y1
z1


+




x2
y2
z2


 =




x1 + x2
y1 + y2
z1 + z2


 , c




x1
y1
z1


 =




cx1
cy1
cz1




Other examples are the spaces Lq(Ω,F ,P) with the usual addition of R.V. and
scalar multiplication of a R.V. X(ω) by a non-random constant.
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The key concept in the definition of a Hilbert space is the inner product which is
defined next.

Definition 2.2.3. An inner product in a linear vector space H is a real-valued
function on pairs h1, h2 ∈ H, denoted (h1, h2), having the following properties:
1) (h1, h2) = (h2, h1);
2) (h1, h2 + αh3) = (h1, h2) + α(h1, h3);
3) (h, h) = 0 if and only if h = 0, otherwise (h, h) > 0.

The canonical inner product on R3 is the dot product (v1, v2) = x1x2+ y1y2+ z1z2
and the canonical inner product on L2(Ω,F ,P) is (X,Y ) = E(XY ).
The following inequality holds for any inner product (for the special case of most
interest to us, see Proposition 1.2.41).

Proposition 2.2.4 (Schwarz inequality). Let ‖h‖ = (h, h)
1
2 . Then, for any

h1, h2 ∈ H,
(h1, h2)

2 ≤ ‖h1‖2‖h2‖2 .
Exercise 2.2.5. (a) Note that (h1 + λh2, h1 + λh2) ≥ 0 for all λ ∈ R. By

the bi-linearity of the inner product this is a quadratic function of λ. To
prove Schwarz’s inequality, find its coefficients and consider value of λ
which minimizes the quadratic expression.

(b) Use Schwarz inequality to derive the triangle inequality ‖h1 + h2‖ ≤
‖h1‖+ ‖h2‖.

(c) Using the bi-linearity of the inner product, check that the parallelogram
law ‖u+ v‖2 + ‖u− v‖2 = 2‖u‖2 + 2‖v‖2 holds.

Thus, each inner product induces a norm on the underlying linear vector space H.

Definition 2.2.6. The norm of h is ‖h‖ = (h, h)
1
2 . In particular, the trian-

gle inequality ‖h1 + h2‖ ≤ ‖h1‖ + ‖h2‖ is an immediate consequence of Schwarz
inequality.

In the space R3 we get the Euclidean norm ‖v‖ =
√
x2 + y2 + z2, whereas for

H = L2(Ω,F ,P) we have that ‖X‖ = (EX2)
1
2 = ‖X‖2, and ‖X‖ = 0 if and only if

X
a.s.
= 0.

Equipping the space H with the norm ‖ · ‖ we have the corresponding notions of
Cauchy and convergent sequences.

Definition 2.2.7. We say that {hn} is a Cauchy-sequence in H if for any ε > 0,
there exists N(ε) < ∞ such that supn,m≥N ‖hn − hm‖ ≤ ε. We say that {hn}
converges to h ∈ H if ‖hn − h‖ → 0 as n→ ∞.

For example, in case of H = L2(Ω,F ,P), the concept of Cauchy-sequences is the
same as what we had already seen in Section 1.3.2.
We are now ready to define the key concept of Hilbert space.

Definition 2.2.8. A Hilbert space is a linear vector space H with inner product
(h, h), which is complete with respect to the corresponding norm ‖h‖ (that is, every
Cauchy sequence in H converges to a point h in H).

By Proposition 1.3.20 we know that L2 is a Hilbert space, since every Cauchy
sequence in L2 converges in quadratic mean to a point in L2. To check your
understanding you may wish to solve the next exercise at this point.
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Exercise 2.2.9. Check that the space R3 of three dimensional real-valued vectors,
together with the inner product (v, u) = v1u1 + v2u2 + v3u3 is a Hilbert space.

To define the conditional expectation we need the following additional structure.

Definition 2.2.10. A Hilbert sub-space K of H is a subset K ⊆ H, which when
equipped with the same inner product is a Hilbert space. Specifically, K is a linear
subspace (closed under addition, scalar multiplication), such that every Cauchy-
sequence {hn} ⊆ K has a limit h ∈ K.

Example 2.2.11. Note that in our setting HY = L2(Ω,FY ,P) ⊆ L2(Ω,F ,P) is
a Hilbert subspace. Indeed, if Zn ∈ HY is Cauchy, then Zn = fn(Y ) → Z ∈ HY

as well. More generally, the Hilbert subspace of L2(Ω,F ,P) spanned by R.V.-s
{X1, X2, · · · , Xn} is the set of h = f(X1, X2, · · · , Xn) with E (h2) <∞.

2.2.2. Orthogonal projection, separability and Fourier series. The ex-
istence of the C.E. is a special instance of the following important geometric theorem
about Hilbert spaces.

Theorem 2.2.12 (Orthogonal Projection). Let G ⊆ H be a given Hilbert subspace
and h ∈ H given. Let d = inf{‖h− g‖ : g ∈ G}, then,
(a). There exists ĥ ∈ G such that d = ‖h− ĥ‖.
(b). Any such ĥ satisfies (h− ĥ, g) = 0 for all g ∈ G.

(c). The vector ĥ that satisfies (b) (or (a)) is unique.

We call ĥ as above the orthogonal projection of h on G.

Our next exercise outlines the hardest part of the proof of the orthogonal projec-
tion theorem.

Exercise 2.2.13. Prove part (a) of Theorem 2.2.12 as follows: Consider gn ∈ G

for which ‖h−gn‖ → d. By definition of d and the parallelogram law for u = h−gm
and v = gn− h, deduce that ‖gn− gm‖ → 0 when both n,m→ ∞, hence (why?) gn
has a limit ĥ ∈ G, such that ‖h− ĥ‖ = d (why?).

In particular, Definition 2.1.3 amounts to saying that the conditional expecta-
tion of X given Y is the orthogonal projection of X in H = L2(Ω,F ,P) on
G = L2(Ω,FY ,P).
Another example of orthogonal projection is the projection (x1, . . . , xk, 0, . . . , 0) of
x ∈ Rd on the hyper-space of lower dimension G = {(y1, . . . , yk, 0, . . . , 0) : yi ∈ R},
some k < d.
An important ingredient of Hilbert space theory is the concept of linear functional,
defined next.

Definition 2.2.14. A functional f : H 7→ R is linear if f(h1 + αh2) = f(h1) +
αf(h2). A linear functional f(·) is called bounded if |f(h)| ≤ C‖h‖ for some
C <∞ and all h ∈ H.

For example, each real function f : R 7→ R is also a functional in the Hilbert
space R. The functional g(x) = 2x is then linear and bounded though g(x) is not
a bounded function. More generally,

Example 2.2.15. Fixing h0 ∈ H a Hilbert space, let f(h) = (h0, h). This is a
bounded linear functional on H since ‖h0‖ < ∞ and |f(h)| ≤ ‖h0‖‖h‖ by Schwarz
inequality.
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The next theorem (which we do not prove), states that any bounded linear func-
tional is of the form of Example 2.2.15. It is often very handy when studying linear
functionals that are given in a rather implicit form.

Theorem 2.2.16 (Riesz representation). If f is a bounded linear functional on a
Hilbert space H, then there exists a unique h0 ∈ H such that f(h) = (h0, h) for all
h ∈ H.

We next define the subclass of separable Hilbert spaces, which have particularly
appealing properties. We use these later in Section 5.1.

Definition 2.2.17. Hilbert space H is separable if it has a complete, countable,
orthonormal basis {hm, m = 1, · · · }, such that

(a). (hm, hl) =

{
1, m = l

0, otherwise
(orthonormal).

(b). If (h, hm) = 0 for all m, then h = 0 (complete).

The classical concept of Fourier series has an analog in the theory of separable
Hilbert spaces.

Definition 2.2.18. We say that h ∈ H has a Fourier series
∑

i (hi, h)hi if

‖h−
N∑

i=1

(hi, h)hi‖ → 0, as N → ∞.

Proposition 2.2.19. The completeness of a basis {hm} is equivalent to the exis-
tence of Fourier series (in {hm}) for any h ∈ H.

A key ingredient in the theory of separable Hilbert spaces is the following approx-
imation theorem.

Theorem 2.2.20 (Parseval). For any complete orthonormal basis {hm} of a sep-
arable Hilbert space H and any f, g ∈ H,

(f, g) = lim
N→∞

N∑

i=1

(f, hi)(g, hi) .

In particular, ‖h‖2 = ∑∞
i=1(h, hi)

2, for all h ∈ H.

Proof. Since both f and g have a Fourier series, it follows by Schwarz in-

equality that aN = (f − ∑N
i=1(f, hi)hi, g − ∑N

i=1(g, hi)hi) → 0 as N → ∞.
Since the inner product is bi-linear and (hi, hj) = 1i=j it follows that aN =

(f, g) − ∑N
i=1(f, hi)(g, hi), yielding the first statement of the theorem. The sec-

ond statement corresponds to the special case of f = g.

We conclude with a concrete example that relates the abstract theory of separable
Hilbert spaces to the familiar classical Fourier series.

Example 2.2.21. Let L2((0, 1),B, U) = {f : (0, 1) 7→ R such that
∫ 1

0
f2(t) dt <

∞} equipped with the inner product (h, g) =
∫ 1

0 h(t)g(t)dt. This is a separable
Hilbert space. Indeed, the classical Fourier series of any such f is

f(t) =

∞∑

n=0

cn cos(2πnt) +

∞∑

n=1

sn sin(2πnt),

where cn = 2
∫ 1

0
f(t) cos(2πnt)dt and sn = 2

∫ 1

0
f(t) sin(2πnt)dt.
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2.3. Properties of the conditional expectation

We start with two extreme examples for which we can easily compute the C.E.

Example 2.3.1. Suppose G and σ(X) are independent (i.e. for all A ∈ G and
B ∈ σ(X) we have that P(A ∩ B) = P(A) P(B)). Then, E(XIA) = E(X) E(IA)
for all A ∈ G. So, the constant Z = E(X) satisfies (2.1.5), that is, in this case
E(X |G) = E(X). In particular, if Y and V are independent random variables and
f a Borel function such that X = f(V ) is integrable, then E(f(V )|Y ) = E(f(V )).

Example 2.3.2. Suppose X ∈ L1(Ω,G,P). Obviously, Z = X satisfies (2.1.5)
and by our assumption X is measurable on G. Consequently, here E(X |G) = X
a.s. In particular, if X = c a.s. (a constant R.V.), then we have that E(X |G) = c
a.s. (and conversely, if E(XIG) = cP(G) for all G ∈ G then X = c a.s.).

Remark. Note that X may have the same law as Y while E(X |G) does not have
the same law as E(Y |G). For example, take G = σ(X) with X and Y square
integrable, independent, of the same distribution and positive variance. Then,
E(X |G) = X per Example 2.3.2 and the non-random constant E(Y |G) = E(Y )
(from Example 2.3.1) have different laws.

You can solve the next exercise either directly, or by showing that F0 is indepen-
dent of σ(X) for any random variable X and then citing Example 2.3.1.

Exercise 2.3.3. Let F0 = {Ω, ∅}. Show that if Z ∈ L1(Ω,F0,P) then Z is
necessarily a non-random constant and deduce that E(X |F0) = EX for any X ∈
L1(Ω,F ,P).

A yet another example consists of X = Y + V with Y and V two independent
R.V-s in L2(Ω,F ,P). Let µ = E(V ). Taking a generic W ∈ HY we know that
W = g(Y ) and E[g2(Y )] < ∞. By Definition 1.4.36 and Proposition 1.2.16 we
know that the square-integrable random variables Y + µ − g(Y ) and V − µ are
independent, hence uncorrelated (see Proposition 1.4.42). Consequently,

E[(V − µ)(Y + µ− g(Y ))] = E[Y + µ− g(Y )]E[V − µ] = 0

(recall that µ = EV ). Thus,

E(X −W )2 = E[(V − µ+ Y + µ− g(Y ))2] = E[(Y + µ− g(Y ))2] +E[(V − µ)2] ,

is minimal for W = g(Y ) = Y +µ. Comparing this result with Examples 2.3.1 and
2.3.2, we see that

E[X |Y ] = E[Y + V |Y ] = E[Y |Y ] +E[V |Y ] = Y +E(V ) .

With additional work (that we shall not detail) one can show that if f(Y, V ) is
integrable then E(f(Y, V )|Y ) = g(Y ) where g(y) = E(f(y, V )) (so the preceding
corresponds to f(y, v) = y + v and g(y) = y + µ).
As we next show, for any probability space (Ω,F ,P) the conditional expectation
of X given a σ-field G ⊆ F is linear in the random variable X .

Proposition 2.3.4. Let X,Y ∈ L1(Ω,F ,P). Then,

E(αX + βY |G) = αE(X |G) + βE(Y |G)
for any α, β ∈ R.



44 2. CONDITIONAL EXPECTATION AND HILBERT SPACES

Proof. Let Z = E(X |G) and V = E(Y |G). Fixing A ∈ G, it follows by
linearity of the expectation operator and the definition of Z and V that

E(IA(αZ+βV )) = αE(IAZ)+βE(IAV ) = αE(IAX)+βE(IAY ) = E(IA(αX+βY )).

Since this applies for all A ∈ G, it follows by definition that the R.V. αZ + βV on
(Ω,G) is the C.E. of αX + βY given G, as stated.
We next deal with the relation between the C.E. of X given two different σ-fields,
one of which contains the other.

Proposition 2.3.5 (Tower property). Suppose H ⊆ G ⊆ F and X ∈ L1(Ω,F ,P).
Then, E(X |H) = E(E(X |G)|H).

Proof. Let Y = E(X |G) and Z = E(Y |H). Fix A ∈ H. Note that A ∈ G and
consequently, by Definition 2.1.5 of Y = E(X |G) we have that

E(IAX) = E(IAY ) = E(IAZ) ,

where the second identity holds by the Definition 2.1.5 of Z = E(Y |H) and the fact
that A ∈ H. Since E(IAX) = E(IAZ) for any A ∈ H, the proposition follows by
the uniqueness of E(X |H) and its characterization in Definition 2.1.5.

Remark. Note that any σ-field G contains the trivial σ-field F0 = {∅,Ω}. Con-
sequently, when H = F0 the tower property applies for any σ-field G. Further,
E(Y |F0) = EY for any integrable random variable Y (c.f. Exercise 2.3.3). Conse-
quently, we deduce from the tower property that

(2.3.1) E(X) = E(X |F0) = E[E(X |G)|F0] = E(E(X |G)),
for any X ∈ L1(Ω,F ,P) and any σ-field G.
Your next exercise shows that we cannot dispense of the relationship between the
two σ-fields in the tower property.

Exercise 2.3.6. Give an example of a R.V. X and two σ-fields F1 and F2 on
Ω = {a, b, c} in which E(E(X |F1)|F2) 6= E(E(X |F2)|F1).

Here are two important applications of the highly useful tower property (also called
the law of iterated expectations).

Exercise 2.3.7. Let Var(Y |G) = E(Y 2|G) − E(Y |G)2, where Y is a square-
integrable random variable and G is a σ-field.

(a) Check that Var(Y |G) = 0 whenever Y ∈ L2(Ω,G,P).
(b) More generally, show that Var(Y ) = E(Var(Y |G)) + Var(E(Y |G)).
(c) Show that if E(Y |G) = X and EX2 = EY 2 < ∞ then X = Y almost

surely.

Exercise 2.3.8. Suppose that G1 and G2 are σ-fields and G1 ⊆ G2. Show that for
any square-integrable R.V. X,

E[(X −E(X |G2))
2] ≤ E[(X −E(X |G1))

2].

Keeping the σ-field G fixed, we may think of the C.E. as an expectation in a
different (conditional) probability space. Consequently, every property of the ex-
pectation has a corresponding extension to the C.E. For example, the extension
of Proposition 1.2.36 is given next without proof (see [GS01, Exercise 7.9.4, page
349] for more details).
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Proposition 2.3.9 (Jensen’s inequality). Let f : R → R be a convex function (that
is, f(λx + (1 − λ)y) ≤ λf(x) + (1 − λ)f(y) for any x, y and λ ∈ [0, 1]). Suppose
X ∈ L1(Ω,F ,P) is such that E|f(X)| <∞. Then, E(f(X)|G) ≥ f(E(X |G)).
Example 2.3.10. Per q ≥ 1, applying Jensen’s inequality for the convex function
f(x) = |x|q we have for all X ∈ Lq(Ω,F ,P), that E(|X |q|G) ≥ |E(X |G)|q.
Combining this example with the tower property and monotonicity of the expec-
tation operator, we find that

Corollary 2.3.11. For each q ≥ 1, the norm of the conditional expectation of
X ∈ Lq(Ω,F ,P) given a σ-field G never exceeds the (Lq)-norm of X.

Proof. Recall Example 2.3.10 that E(|X |q|G) ≥ |E(X |G)|q almost surely.
Hence, by the tower property and monotonicity of the expectation operator,

‖X‖qq = E(|X |q) = E[E(|X |q|G)] ≥ E[|E(X |G)|q] = ‖E(X |G)‖qq .
That is, ‖X‖q ≥ ‖E(X |G)‖q for any q ≥ 1.

We also have the corresponding extensions of the Monotone and Dominated Con-
vergence theorems of Section 1.4.2.

Theorem 2.3.12 (Monotone Convergence for C.E.). If 0 ≤ Xm ր X and E(X) <
∞ then E(Xm|G) ր E(X |G) a.s. (see [Bre92, Proposition 4.24] for proof).

Theorem 2.3.13 (Dominated Convergence for C.E.). If |Xm| ≤ Y ∈ L1(Ω,F ,P)

and Xm
a.s→ X, then E(Xm|G) a.s.→ E(X |G).

Remark. In contrast with Theorem 1.4.27, the convergence in probability to X
by Xm that are dominated by an integrable R.V. Y does not imply the convergence
almost surely of E(Xm|G) to E(X |G). Indeed, taking G = F we see that such a
statement would have contradicted Proposition 1.3.8.

Our next result shows that the C.E. operation is continuous on each of the Lq

spaces.

Theorem 2.3.14. Suppose Xn
q.m.→ X, that is, Xn, X ∈ Lq(Ω,F ,P) with E(|Xn −

X |q) → 0. Then, E(Xn|G) q.m.→ E(X |G).
Proof. By the linearity of conditional expectations and Jensen’s Inequality,

E(|E(Xn|G)−E(X |G)|q) = E(|E(Xn −X |G)|q)
≤ E(E(|Xn −X |q|G)) = E(|Xn −X |q) → 0,

by hypothesis.

We next show that one can take out what is known when computing the C.E.

Proposition 2.3.15. Suppose Y is bounded and measurable on G, and that X ∈
L1(Ω,F ,P). Then, E(XY |G) = Y E(X |G).

Proof. Note that XY ∈ L1 and Z = Y E(X |G) is measurable on G. Now, for
any A ∈ G,

E[(XY − Z)IA] = E[(X −E(X |G))(Y IA)] = 0 ,

by the orthogonality property (2.1.5) of E(X |G) (since V = Y IA is bounded and
measurable on G). Since A ∈ G is arbitrary, the proposition follows (see Definition
2.1.5 and Theorem 2.1.6).



46 2. CONDITIONAL EXPECTATION AND HILBERT SPACES

You can check your understanding by proving that Proposition 2.3.15 holds also
whenever Y ∈ L2(Ω,G,P) and X ∈ L2(Ω,F ,P) (actually, this proposition applies
as soon as Y is measurable on G and both X and XY are integrable).

Exercise 2.3.16. Let Z = (X,Y ) be a uniformly chosen point in (0, 1)2. That
is, X and Y are independent random variables, each having the U(0, 1) measure of
Example 1.1.11. Set T = IA(Z) + 5IB(Z) where A = {(x, y) : 0 < x < 1/4, 3/4 <
y < 1} and B = {(x, y) : 3/4 < x < 1, 0 < y < 1/2}.

(a) Find an explicit formula for the conditional expectation W = E(T |X)
and use it to determine the conditional expectation U = E(TX |X).

(b) Find the value of E[(T −W ) sin(eX)].
(c) Without any computation decide whether E(W 2) − E(T 2) is negative,

zero, or positive. Explain your answer.

We conclude this section with a proposition extending Example 2.3.1 and a pair of
exercises dealing with the connection (or lack thereof) between independence and
C.E.

Proposition 2.3.17. If X is integrable and σ-fields G and σ(σ(X),H) are inde-
pendent, then

E[X |σ(G,H)] = E[X | H] .

Exercise 2.3.18. Building on Exercise 1.4.38 provide a σ-field G ⊆ F and a
bounded random variable X which is independent of integrable Y , such that:

(a) E(X |G) is not independent of E(Y |G).
(b) E(XY |G) 6= E(X |G)E(Y |G).

Exercise 2.3.19. Suppose that X and Y are square integrable random variables.

(a) Show that if E(X |Y ) = E(X) then X and Y are uncorrelated.
(b) Provide an example of uncorrelated X and Y for which E(X |Y ) 6= E(X).
(c) Provide an example where E(X |Y ) = E(X) but X and Y are not in-

dependent (this is also an example of uncorrelated but not independent
R.V.).

2.4. Regular conditional probability

Fixing two σ-fields G,H ⊆ F , let P̃(A|G) = E(IA|G) for any A ∈ F . Obviously,

P̃(A|G) ∈ [0, 1] exists for any such A and almost all ω ∈ Ω. Ideally, we would expect

that the collection {P̃(A|G) : A ∈ H} is also a probability measure on (Ω,H) for

any fixed ω ∈ Ω. When this is the case, we call P̃(·|G) the Regular Conditional
Probability (R.C.P.) on H given G. Note that all conditional expectations can then
be defined through the R.C.P. (see [Bre92, Proposition 4.28] for more details).
Unfortunately, the R.C.P. fails to exist in general. Here is the reason for this
unexpected difficulty. As the C.E. is only defined in the almost sure sense, for any
countable collection of disjoint sets An ∈ H there is possibly a set of ω ∈ Ω of
probability zero for which

P̃(
⋃

n

An|G) 6=
∑

n

P̃(An|G).

We may need to deal with an uncountable number of such collections to check the
R.C.P. property throughout H, causing the corresponding exceptional sets of ω to
pile up to a non-negligible set.
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The way we avoid this problem is by focusing on the R.C.P. for the special choice
of H = σ(X) with X a specific real-valued R.V. of interest. That is, we restrict our
attention to A = {ω : X(ω) ∈ B} for a Borel set B. The existence of the R.C.P.

is then equivalent to the question whether P̃(X ∈ B|G) = P̂(B|G) is a probability
measure on (R,B), as precisely defined next.

Definition 2.4.1. Let X be a R.V. on (Ω,F ,P) and G ⊆ F a σ-field. The col-

lection P̂(B|G) is called the regular conditional probability distribution (R.C.P.D.)
of X given G if:

(a) P̂(B|G) = E[IX∈B|G] for any fixed Borel set B ⊆ R. That is, P̂(B|G) is

measurable on (Ω,G) such that P({ω : X(ω) ∈ B} ∩ A) = E[IAP̂(B|G)] for any
A ∈ G.
(b) The collection P̂(·|G) is a probability measure on (R,B) for any fixed ω ∈ Ω.

The R.C.P.D. is thus the analog of the law of X as in Definition 1.4.1, now given
the information contained in G (which is why we added the word “distribution” to
it). The essential point is of course that any real-valued R.V. has a R.C.P.D.

Proposition 2.4.2. For any random variable X and any σ-field G ⊆ F , there

exists a R.C.P.D. P̂(·|G) (see [Bre92, Theorem 4.30] for a proof).

We note in passing that the reason R.C.P.D. always exists is that the σ-field σ(X)
inherits the structure of B which in turn is “not too big” due to the fact the rational
numbers are dense in R.
To practice your understanding of Definition 2.4.1 solve the following exercise.

Exercise 2.4.3. Show that σ(X) and G are independent if and only if P̂(B|G) =
P(X ∈ B) for all B ∈ B.

An alternative way of defining the R.C.P.D. is P̂X|G(·, ·) : B×Ω → [0, 1] such that

(a) For each B ∈ B, almost surely P̂X|G(B, ·) = E[IX∈B|G] and is measurable.

(b) For any ω, the function P̂X|G(·, ω) is a probability measure.

The R.C.P.D. gives us yet another alternative definition for the C.E.

Definition 2.4.4. The conditional expectation of an integrable random variable
X given a σ-field G is

E[X |G] =
∫ ∞

−∞
xP̂X|G(dx, ω) ,

where the right side is to be interpreted in the sense of Definition 1.2.19 of Lebesgue’s

integral for the probability space (R,B, P̂X|G(·, ω)).
For a proof that this definition coincides with our earlier definition of the condi-
tional expectation see for example [Bre92, Proposition 4.28].

Example 2.4.5. The R.C.P.D. is rather explicit when G = σ(Y ) and the random
vector (X,Y ) has a probability density function, denoted fX,Y . That is, when for
all x, y ∈ R,

(2.4.1) P(X ≤ x, Y ≤ y) =

∫ x

−∞

∫ y

−∞
fX,Y (u, v) du dv ,



48 2. CONDITIONAL EXPECTATION AND HILBERT SPACES

with fX,Y a non-negative Borel function on R2 such that
∫
R2 fX,Y (u, v)dudv = 1. In

this case, the R.C.P.D. of X given G = σ(Y ) has the density function fX|Y (x|Y (ω))
where

fX|Y (x|y) =
fX,Y (x, y)

fY (y)
,

and fY (y) =
∫
R
fX,Y (v, y)dv. Consequently, by Definition 2.4.4 we see that here

E(X |Y ) =

∫ ∞

−∞
xfX|Y (x|Y )dx ,

in agreement with the classical formulas provided in elementary (non-measure the-
oretic) probability courses.

To practice your understanding of the preceding example, solve the next exercise.

Exercise 2.4.6.

(a) Suppose that the joint law of (X,Y, Z) has a density. Express the R.C.P.D.
of Y given X,Z, in terms of this density.

(b) Using this expression show that if X is independent of the pair (Y, Z),
then

E(Y |X,Z) = E(Y |Z).
(c) Give an example of random variables X,Y, Z, such that X is independent

of Y and
E(Y |X,Z) 6= E(Y |Z).



CHAPTER 3

Stochastic Processes: general theory

There are two ways to approach the definition of a stochastic process (S.P.)
The easier approach, which we follow in Section 3.1, is to view a S.P. as a collec-
tion of R.V.-s {Xt(ω), t ∈ I}, focusing on the finite dimensional distributions and
ignoring sample path properties (such as continuity). Its advantages are:
• The index set I can be arbitrary;
• The measurability of t 7→ Xt(ω) as a function from I to R (per fixed ω), is not
part of the definition of the process;
• There is no need to master functional analysis techniques and results.

The main disadvantages of this approach are:
• It only works when Xt(ω) is well-defined for each fixed t;
• Using it, we cannot directly determine important properties such as continuity or
monotonicity of the sample path, or the law of suptXt.

A more sophisticated approach to S.P., mostly when I is an interval on the real
line, views the S.P. as a function-valued R.V: Ω → [Space of functions] (examples
of such spaces might be C[0, 1] or L2[0, 1]). The main advantages of this approach
are the complements of the disadvantages of our approach and vice verse.

Defining and using characteristic functions we study in Section 3.2 the important
class of Gaussian stochastic processes. We conclude this chapter by detailing in
Section 3.3 sufficient conditions for the continuity of the sample path t 7→ Xt(ω),
for almost all outcomes ω.

3.1. Definition, distribution and versions

Our starting point is thus the following definition of what a stochastic process is.

Definition 3.1.1. Given (Ω,F ,P), a stochastic process (S.P.) {Xt} is a collec-
tion {Xt : t ∈ I} of R.V.-s where the index t belongs to the index set I. Typically,
I is an interval in R (in which case we say that {Xt} is a continuous time stochas-
tic process), or a subset of {1, 2, . . . , n, . . .} (in which case we say that {Xt} is a
discrete time stochastic process. We also call t 7→ Xt(ω) the sample function (or
sample path) of the S.P.

Recall our notation σ(Xt) for the σ-field generated by Xt. The discrete time sto-
chastic processes are merely countable collections of R.V.-s X1, X2, X3, . . . defined
on the same probability space. All relevant information about such a process dur-
ing a finite time interval {1, 2, . . . , n} is conveyed by the σ-field σ(X1, X2, . . . , Xn),
namely, the σ-field generated by the “rectangle” sets

⋂n
i=1{ω : Xi(ω) ≤ αi} for

αi ∈ R (compare with Definition 1.2.8 of σ(X)). To deal with the full infinite time
horizon we just take the σ-field σ(X1, X2, . . .) generated by the union of these sets

49
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Figure 1. Two sample paths of a stochastic process, correspond-
ing to two outcomes ω1 and ω2.

over n = 1, 2, . . . (this is exactly what we did to define Fc of the coin tosses Example
1.1.13). Though we do not do so here, it is not hard to verify that in this setting
the σ-field σ(X1, X2, . . .) coincides with the smallest σ-field containing σ(Xt) for
all t ∈ I, which we denote hereafter by FX.

Perhaps the simplest example of a discrete time stochastic process is that of in-
dependent, identically distributed R.V.-s Xn (see Example 1.4.7 for one such con-
struction). Though such a S.P. has little interesting properties worth study, it is
the corner stone of the following, fundamental example, called the random walk.

Definition 3.1.2. A random walk is the sequence Sn =
∑n

i=1 ξi, where ξi are
independent and identically distributed real-valued R.V.-s defined on the same prob-
ability space (Ω,F ,P). When ξi are integer-valued we say that this is a random
walk on the integers, and call the special case of ξi ∈ {−1, 1} a simple random walk.

When considering a continuous-time S.P. we deal with uncountable collections of
R.V.. As we soon see, this causes many difficulties. For example, when we talk
about the distribution (also called the law) of such a S.P. we usually think of the
restriction of P to a certain σ-field. But which σ-field to choose? That is, which one
carries all the information we have in mind? Clearly, we require at least FX so we
can determine the law PXt of Xt(ω) per fixed t. But is this enough? For example,
we might be interested in sets such as Hf = {ω : Xt(ω) ≤ f(t), ∀0 ≤ t ≤ 1}
for some functions f : [0, 1] 7→ R. Indeed, the value of sup(Xt : 0 ≤ t ≤ 1) is
determined by such sets for f(t) = α independent of t. Unfortunately, such sets
typically involve an uncountable number of set operations and thus are usually not
in FX, and hence sup(Xt : 0 ≤ t ≤ 1) might not even be measurable on FX. So,
maybe we should take instead σ({Hf , f : [0, 1] → R}) which is quite different from
FX? We choose in these notes the smaller, i.e. simpler, σ-field FX, but what is then
the minimal information we need for specifying uniquely a probability measure on
this space? Before tackling this issue, we provide some motivation to our interest
in continuous-time S.P.
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Figure 2. Illustration of scaled simple random walks for different
values of n.

Assuming that E(ξ1) = 0 and E(ξ21) = 1 we have that E(Sn) = 0 and

(3.1.1) E(S2
n) = E

[
(

n∑

i=1

ξi)
2
]
=

n∑

i,j=1

E(ξiξj) = n ,

that is, E
[
(n−1/2Sn)

2
]
= 1. Further, in this case, by central limit theorem we have

that

(3.1.2) n−1/2Sn
L−→ G = N(0, 1) ,

with N(µ, v) denoting a Gaussian R.V. of mean µ and variance v (c.f. Example
1.4.13). Replacing n by [nt] (the integer part of nt), we get from (3.1.2) by rescaling

that also n−1/2S[nt]
L−→ N(0, t) for any fixed 0 ≤ t ≤ 1. This leads us to state the

functional C.L.T. where all values of 0 ≤ t ≤ 1 are considered at once.

Theorem 3.1.3. (see [Bre92, Section 12.2]) Consider the random walk Sn when
E(ξ1) = 0 and E(ξ21) = 1. Take the linear interpolation of the sequence Sn, scale

space by n− 1
2 and time by n−1 (see Figure 2). Taking n→ ∞ we arrive at a limiting

object which we call the Brownian motion on 0 ≤ t ≤ 1. The convergence here is
weak convergence in the sense of Definition 1.4.20 with S the set of continuous
functions on [0, 1], equipped with the topology induced by the supremum norm.

Even though it is harder to define the Brownian motion (being a continuous time
S.P.), computations for it typically involve relatively simple Partial Differential
Equations and are often more explicit than those for the random walk. In addition,
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unlike the random walk, the Brownian motion does not depend on the specific law
of ξi (beyond having zero mean and unit variance). For a direct construction of the
Brownian motion, to which we return in Section 5.1, see [Bre92, Section 12.7].

Remark. The condition E(ξ21) < ∞ is almost necessary for the n−1/2 scaling of
space and the Brownian limiting process. Indeed, if E(ξα1 ) = ∞ for some 0 < α < 2,
then both scaling of space and the limit S.P. are changed with respect to Theorem
3.1.3.

In the next example, which is mathematically equivalent to Theorem 3.1.3, we
replace the sum of independent and identically distributed R.V.-s by the product
of such non-negative R.V.-s.

Example 3.1.4. Let Mn =
∏n

i=1 Yi where Yi are positive, independent identically
distributed random variables (for instance, the random daily return rates of a cer-
tain investment). Let Sn = logMn and ξi = log Yi, noting that Sn =

∑n
i=1 ξi

is a random walk. Assuming E(log Y1) = 0 and E[(log Y1)
2] = 1 we know that

n−1/2S[nt] = n−1/2 logM[nt] converges to a Brownian motionWt as n→ ∞. Hence,

the limit behavior of Mn is related to that of the Geometric Brownian motion eWt .

For continuous time stochastic processes we provide next few examples of events
that are in the σ-field FX and few examples that in general may not belong to this
σ-field (see [Bre92, Section 12.4] for more examples).

(1). {ω : Xt1 ≤ α} ∈ FX.

(2). {ω : X1/k ≤ α, k = 1, 2, . . . , N} ∈ FX.

(3). {ω : X1/k ≤ α, k = 1, 2, 3, . . .} = {ω : supkX1/k(ω) ≤ α} ∈ FX.

(4). {ω : sup(Xt : 0 ≤ t ≤ 1) ≤ α} is not necessarily in FX since the supremum
here is over an uncountable collection of R.V.-s. However, check that this event is
in FX whenever all sample functions of the S.P. {Xt} are right continuous.

(5). {ω : Xt(ω) : I 7→ R is a measurable function} may also be outside FX (say for
I = [0, 1]).

We define next the stochastic process analog of the distribution function.

Definition 3.1.5. Given N < ∞ and a collection t1, t2, . . . , tN in I, we denote
the (joint) distribution of (Xt1 , . . . , XtN ) by Ft1,t2,··· ,tN (·), that is,

Ft1,t2,··· ,tN (α1, α2, · · · , αN ) = P(Xt1 ≤ α1, · · · , XtN ≤ αN ),

for all α1, α2, · · · , αN ∈ R. We call the collection of functions Ft1,t2,··· ,tN (·), the
finite dimensional distributions (f.d.d.) of the S.P.

Having independent increments is one example of a property that is determined
by the f.d.d.

Definition 3.1.6. With Gt the smallest σ-field containing σ(Xs) for any 0 ≤ s ≤
t, we say that a S.P. {Xt} has independent increments if Xt+h−Xt is independent
of Gt for any h > 0 and all t ≥ 0. This property is determined by the f.d.d. That is,
if the random variables Xt1 , Xt2 −Xt1 , . . . , Xtn −Xtn−1 are mutually independent,
for all n <∞ and 0 ≤ t1 < t2 < · · · < tn <∞ then the S.P. {Xt} has independent
increments.
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Remark. For example, both the random walk and the Brownian motion are
processes with independent increments.

The next example shows that the f.d.d. do not determine some other important
properties of the stochastic process, such as continuity of its sample path. That is,
knowing all f.d.d. is not enough for computing P({ω : t 7→ Xt(ω) is continuous on
[0, 1]}).
Example 3.1.7. Consider the probability space Ω = [0, 1] with its Borel σ-field and
the Uniform law on [0, 1] (that is, the probability of each interval equals its length,
also known as Lebesgue measure restricted to [0, 1]). Given ω ∈ Ω, we define two
Stochastic Processes:

Yt(ω) = 0, ∀t, ω Xt(ω) =

{
1, t = ω

0, otherwise

Let At = {ω : Xt 6= Yt} = {t}. Since P(At) = 0, we have that P(Xt = Yt) = 1

for each fixed t. Moreover, let AN =
⋃N

i=1Ati , then P(AN ) = 0 (a finite union of
negligible sets is negligible). Since this applies for any choice of N and t1, . . . , tN , we
see that the f.d.d. of {Xt} are the same as those of {Yt}. Moreover, considering the
set A∞ =

⋃∞
i=1Ati , involving a countable number of times, we see that P(A∞) = 0,

that is, almost surely, Xt(ω) agrees with Yt(ω) at any fixed, countable, collection of
times. But note that some global sample-path properties do not agree. For example,

P({ω : (sup{Xt(ω) : 0 ≤ t ≤ 1}) 6= 0}) = 1,

P({ω : (sup{Yt(ω) : 0 ≤ t ≤ 1}) 6= 0}) = 0.

Also,

P({ω : t 7→ Xt(ω) is continuous}) = 0,

P({ω : t 7→ Yt(ω) is continuous}) = 1.

While the maximal value and continuity of sample path are different for the two
S.P. of Example 3.1.7, we should typically consider such a pair to be the same S.P.,
motivating our next two definitions.

Definition 3.1.8. Two S.P. {Xt} and {Yt} are called versions of one another if
they have the same finite-dimensional distributions.

Definition 3.1.9. A S.P. {Yt} is called a modification of another S.P. {Xt} if
P(Yt = Xt) = 1 for all t ∈ I.
We consider next the relation between the concepts of modification and version,
starting with:

Exercise 3.1.10. Show that if {Yt} is a modification of {Xt}, then {Yt} is also a
version of {Xt}.
Note that a modification has to be defined on the same probability space as the
original S.P. while this is not required of versions.
The processes in Example 3.1.7 are modifications of one another. In contrast,
our next example is of two versions on the same probability space which are not
modifications of each other.
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Example 3.1.11. Consider Ω2 = {HH,TT,HT, TH} with the uniform probability
measure P, corresponding to two independent fair coin tosses, whose outcome is
ω = (ω1, ω2). Define on (Ω2, 2

Ω2 ,P) the S.P

Xt(ω) = 1[0,1)(t)IH(ω1) + 1[1,2)(t)IH(ω2) , 0 ≤ t < 2 ,

and Yt(ω) = 1−Xt(ω) for 0 ≤ t < 2.

Exercise 3.1.12. To practice your understanding you should at this point check
that the processes Xt and Yt of Example 3.1.11 are versions of each other but are
not modifications of each other.

Definition 3.1.13. We say that a collection of finite dimensional distributions is
consistent if

lim
αk↑∞

Ft1,··· ,tN (α1, · · · , αN ) = Ft1,··· ,tk−1,tk+1,tN (α1, · · · , αk−1, αk+1, · · · , αN ) ,

for any 1 ≤ k ≤ N , t1 < t2 < · · · < tN ∈ I and αi ∈ R, i = 1, . . . , N .

Convince yourself that the f.d.d. of any S.P. must be consistent. Conversely,

Proposition 3.1.14. For any consistent collection of finite dimensional distribu-
tions, there exists a probability space (Ω,F ,P) and a stochastic process ω 7→ Xt(ω)
on it, whose f.d.d. are in agreement with the given collection (c.f. [Bre92, Theo-
rem 12.14], or [GS01, Theorem 8.6.3]). Further, the restriction of the probability
measure P to the σ-field FX is uniquely determined by the given collection of f.d.d.

We note in passing that the construction of Proposition 3.1.14 builds on the easier
case of discrete time stochastic processes (which is treated for example in [Bre92,
Section 2.4]).
We can construct a σ-field that is the image of FX on the range of ω 7→ {Xt(ω) :
t ∈ I} ⊆ RI .

Definition 3.1.15. For an interval I ⊆ R, let RI denote the set of all functions
x : I → R. A finite dimensional rectangle in RI is any set of the form {x : x(ti) ∈
Ji, i = 1, . . . , n} for a non-negative integer n, intervals Ji ⊆ R and times ti ∈ I,
i = 1, . . . , n. The cylindrical σ-field BI is the σ-field generated by the collection of
finite dimensional rectangles.

• What follows may be omitted at first reading.
While f.d.d. do not determine important properties of the sample path t 7→ Xt(ω)
of the S.P. (see Example 3.1.7), they uniquely determine the probabilities of events
in FX (hence each property of the sample path that can be expressed as an element
of the cylindrical σ-field BI).

Proposition 3.1.16. For an interval I ⊆ R and any S.P. {Xt} on t ∈ I, the
σ-field FX consists of the events {ω : X·(ω) ∈ Γ} for Γ ∈ BI. Further, if a S.P.
{Yt} is a version of {Xt}, then P(X· ∈ Γ) = P(Y· ∈ Γ) for all such Γ (see [Bre92,
Corollary 12.9 and Proposition 12.12] for proofs).
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3.2. Characteristic functions, Gaussian variables and processes

Subsection 3.2.1 is about the fundamental concept of characteristic function and
its properties. Using it, we study in Subsection 3.2.2 the Gaussian random vectors
and stochastic processes. Subsection 3.2.3 deals with stationarity, an important
concept in the general theory of stochastic processes which is simpler to check for
the Gaussian processes.

3.2.1. Characteristic function. We start with the definition of the charac-
teristic function of a random vector. In doing so we adopt the convention that a
complex valued random variable Z is a function from Ω to C such that both the real
and imaginary parts of Z are Borel measurable, and if Z = X + iY with X,Y ∈ R

integrable random variables (and i =
√
−1), then E(Z) = E(X) + iE(Y ) ∈ C.

Definition 3.2.1. A random vector X = (X1, X2, · · · , Xn) with values in Rn has
the characteristic function

ΦX(θ) = E[ei
∑n

k=1 θkXk ] ,

where θ = (θ1, θ2, · · · , θn) ∈ R
n and i =

√
−1.

Remark. The characteristic function ΦX : Rn → C exists for any X since

(3.2.1) ei
∑n

k=1 θkXk = cos(

n∑

k=1

θkXk) + i sin(

n∑

k=1

θkXk) ,

with both real and imaginary parts being bounded (hence integrable) random vari-
ables. Actually, we see from (3.2.1) that ΦX(0) = 1 and |ΦX(θ)| ≤ 1 for all θ ∈ Rn

(see [Bre92, Proposition 8.27] or [GS01, Section 5.7] for other properties of the
characteristic function).

Our next proposition justifies naming ΦX the characteristic function of (the law
of) X.

Proposition 3.2.2. The characteristic function determines the law of a random
vector. That is, if ΦX(θ) = ΦY (θ) for all θ then X has the same law (= probability
measure on R

n) as Y (for proof see [Bre92, Theorems 11.4 and 8.24] or [GS01,
Corollary 5.9.3]).

Remark. The law of a non-negative random variable X is also determined by its
moment generating function MX(s) = E[esX ] at s < 0 (see [Bre92, Proposition
8.51] for a proof). While the real-valued function MX(s) is a simpler object, it
is unfortunately useless for the many random variables X which are neither non-
negative nor non-positive and for which MX(s) = ∞ for all s 6= 0.

The characteristic function is very useful in connection with convergence in law.
Indeed,

Exercise 3.2.3. Show that if Xn
L−→ X then ΦXn(θ) → ΦX(θ) for any θ ∈ R.

Remark. Though much harder to prove, the converse of Exercise 3.2.3 is also

true, namely if ΦXn(θ) → ΦX(θ) for each θ ∈ R then Xn
L−→ X .

We continue with a few explicit computations of the characteristic function.
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Example 3.2.4. Consider X a Bernoulli(p) random variable, that is, P(X = 1) =
p and P(X = 0) = 1− p. Its characteristic function is by definition

ΦX(θ) = E[eiθX ] = peiθ + (1− p)ei0θ = peiθ + 1− p .

The same type of explicit formula applies to any R.V. X ∈ SF. Moreover, such
formulas apply for any discrete valued R.V. For example, if X ∼ Poisson(λ) then

(3.2.2) ΦX(θ) = E[eiθX ] =

∞∑

k=0

(λeiθ)k

k!
e−λ = eλ(e

iθ−1) .

The characteristic function has an explicit form also when the R.V. X has a
probability density function fX as in Definition 1.2.23. Indeed, then by Proposition
1.2.29 we have that

(3.2.3) ΦX(θ) =

∫ ∞

−∞
eiθxfX(x)dx ,

which is merely the Fourier transform of the density fX . For example, applying
this formula we see that the Uniform random variable U of Example 1.1.11 has
characteristic function ΦU (θ) = (eiθ − 1)/(iθ). Assuming that the density fX is
bounded and continuous, we also have the explicit inversion formula

(3.2.4) fX(x) =
1

2π

∫ ∞

−∞
e−iθxΦX(θ)dθ ,

as a way to explain Proposition 3.2.2 ([Bre92, Theorem 8.39] shows that this
inversion formula is valid whenever

∫
|ΦX(θ)|dθ < ∞, see also [GS01, Theorem

5.9.1]).
We next recall the extension of the notion of density as in Definition 1.2.23 to a
random vector (as done already in (2.4.1)).

Definition 3.2.5. We say that a random vector X = (X1, . . . , Xn) has a proba-
bility density function fX if

P({ω : ai ≤ Xi(ω) ≤ bi, i = 1, . . . , n}) =
∫ b1

a1

· · ·
∫ bn

an

fX(x1, . . . , xn)dxn · · · dx1 ,

for every ai < bi, i = 1, . . . , n. Such density fX must be a non-negative Borel
measurable function with

∫
Rn fX(x)dx = 1 (fX is sometimes called the joint density

of X1, . . . , Xn as in [GS01, Definition 4.5.2]).

Adopting the notation (θ, x) =
∑n

k=1 θkxk we have the following extension of the
Fourier transform formula (3.2.3) to random vectors X with density,

ΦX(θ) =

∫

Rn

ei(θ,x)fX(x)dx

(this is merely a special case of the extension of Proposition 1.2.29 to h : Rn → R).
Though we shall not do so, we can similarly extend the explicit inversion formula
of (3.2.4) to X having bounded continuous density, or alternatively, having an
absolutely integrable characteristic function.
The computation of the characteristic function is much simplified in the presence
of independence, as shown by the following alternative of Proposition 1.4.40.
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Proposition 3.2.6. If X = (X1, X2, . . . , Xn) with Xi mutually independent R.V.,
then clearly,

(3.2.5) ΦX(θ) = E[
n∏

k=1

eiθkXk ] =
n∏

k=1

ΦXk
(θk) ∀ θ ∈ R

n

Conversely, if (3.2.5) holds then the random variables Xi, i = 1, . . . , n are mutually
independent of each other.

3.2.2. Gaussian variables, vectors and processes. We start by recalling
some linear algebra concepts we soon need.

Definition 3.2.7. An n × n matrix A with entries Ajk is called non-negative
definite (or positive semidefinite) if Ajk = Akj for all j, k, and for any θ ∈ Rn

(θ,Aθ) =

n∑

j=1

n∑

k=1

θjAjkθk ≥ 0.

We next define the Gaussian random vectors via their characteristic functions.

Definition 3.2.8. We say that a random vector X = (X1, X2, · · · , Xn) has a
Gaussian (or multivariate Normal) distribution if

ΦX(θ) = e−
1
2 (θ,Σθ)ei(θ,µ),

for some non-negative definite n × n matrix Σ, some µ = (µ1, µ2, · · · , µn) ∈ Rn

and all θ = (θ1, θ2, · · · , θn) ∈ Rn.

Remark. In the special case of n = 1, we say that a random variable X is
Gaussian if for some µ ∈ R, some σ2 ≥ 0 and all θ ∈ R,

E[eiθX ] = e−
1
2 θ

2σ2+iθµ.

As we see next, the classical definition of Gaussian distribution via its density
amounts to a strict subset of the distributions we consider in Definition 3.2.8.

Definition 3.2.9. We say that X has a non-degenerate Gaussian distribution if
the matrix Σ is invertible, or alternatively, when Σ is (strictly) positive definite
matrix, that is (θ,Σθ) > 0 whenever θ is a non-zero vector (for an equivalent
definition see [GS01, Section 4.9]).

Proposition 3.2.10. A random vector X with a non-degenerate Gaussian distri-
bution has the density

fX(x) =
1

(2π)n/2(detΣ)1/2
e−

1
2 (x−µ,Σ−1(x−µ))

(see also [GS01, Definition 4.9.4]). In particular, if σ2 > 0, then a Gaussian
random variable X has the density

fX(x) =
1√
2πσ

e−
1
2 (x−µ)2/σ2

(for example, see [GS01, Example 4.4.4]).

Our next proposition links the vector µ and the matrix Σ to the first two moments
of the Gaussian distribution.
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Proposition 3.2.11. The parameters of the Gaussian distribution are µj =
E(Xj) and Σjk = E[(Xj − µj)(Xk − µk)], j, k = 1, . . . , n (c.f. [GS01, Theorem
4.9.5]). Thus, µ is the mean vector and Σ is the covariance matrix of X.

As we now demonstrate, there is more to a Gaussian random vector than just
having coordinates that are Gaussian random variables.

Exercise 3.2.12. Let X be a Gaussian R.V. independent of S, with E(X) = 0
and P(S = 1) = P(S = −1) = 1/2.

(a) Check that SX is Gaussian.
(b) Give an example of uncorrelated, zero-mean, Gaussian R.V. X1 and X2

such that the vector X = (X1, X2) is not Gaussian and where X1 and X2

are not independent.

Exercise 3.2.13. Suppose (X,Y ) has a bi-variate Normal distribution (per Def-
inition 3.2.8), with mean vector µ = (µX , µY ) and the covariance matrix Σ =(

σ2
X ρσXσY

ρσXσY σ2
Y

)
, with σX , σY > 0 and |ρ| ≤ 1.

(a) Show that (X,Y ) has the same law as (µX +σXρU +σX
√
1− ρ2V, µY +

σY U), where U and V are independent Normal R.V.-s of mean zero and
variance one. Explain why this implies that Z = X − (ρσX/σY )Y is
independent of Y .

(b) Explain why such X and Y are independent whenever they are uncorre-
lated (hence also whenever E(X |Y ) = EX).

(c) Verify that E(X |Y ) = µX + ρσX

σY
(Y − µY ).

Part (b) of Exercise 3.2.13 extends to any Gaussian random vector. That is,

Proposition 3.2.14. If a Gaussian random vector X = (X1, . . . , Xn) has uncor-
related coordinates, then its coordinates are also mutually independent.

Proof. Since the coordinates Xk are uncorrelated, the corresponding matrix
Σ has zero entries except at the main-diagonal j = k (see Proposition 3.2.11).
Hence, by Definition 3.2.8, the characteristic function ΦX(θ) is of the form of∏n

k=1 ΦXk
(θk). This in turn implies that the coordinates Xk of the random vector

X are mutually independent (see Proposition 3.2.6).

Definition 3.2.8 allows for Σ that is non-invertible, so for example the random
variable X = µ a.s. is considered a Gaussian variable though it obviously does
not have a density (hence does not fit Definition 3.2.9). The reason we make this
choice is to have the collection of Gaussian distributions closed with respect to
convergence in 2-mean, as we prove below to be the case.

Proposition 3.2.15. Suppose a sequence of n-dimensional Gaussian random vec-

tors X(k), k = 1, 2, . . . converges in 2-mean to an n-dimensional random vector X,

that is, E[(Xi −X
(k)
i )2] → 0 as k → ∞, for i = 1, 2, . . . , n. Then, X is a Gauss-

ian random vector, whose parameters µ and Σ are the limits of the corresponding

parameters µ(k) and Σ(k) of X(k).

Proof. We start by verifying the convergence of the parameters of X(k) to
those of X . To this end, fixing 1 ≤ i, j ≤ n and applying the inequality

|(a+ x)(b + y)− ab| ≤ |ay|+ |bx|+ |xy|
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for a = Xi, b = Xj , x = X
(k)
i −Xi and y = X

(k)
j −Xj , we get by monotonicity of

the expectation that

E|X(k)
i X

(k)
j −XiXj | ≤ E|Xi(X

(k)
j −Xj)|+E|Xj(X

(k)
i −Xi)|

+ E|(X(k)
i −Xi)(X

(k)
j −Xj)| .

Thus, by the Schwarz inequality, c.f. Proposition 1.2.41, we see that

E|X(k)
i X

(k)
j −XiXj | ≤ ‖Xi‖2‖X(k)

j −Xj‖2 + ‖Xj‖2‖X(k)
i −Xi‖2

+ ‖X(k)
i −Xi‖2‖X(k)

j −Xj‖2 .

So, the assumed convergence in 2-mean of X(k) to X implies the convergence in

1-mean of X
(k)
i X

(k)
j to XiXj as k → ∞. This in turn implies that EX

(k)
i X

(k)
j →

EXiXj (c.f. Exercise 1.3.21). Further, the assumed convergence in 2-mean of X
(k)
l

to Xl (as k → ∞) implies the convergence of µ
(k)
l = EX

(k)
l to µl = EXl, for

l = 1, 2, . . . , n, and hence also that

Σ
(k)
ij = EX

(k)
i X

(k)
j − µ

(k)
i µ

(k)
j → EXiXj − µiµj = Σij .

In conclusion, we established the convergence of the mean vectors µ(k) and the

covariance matrices Σ(k) to the mean vector µ and the covariance matrix Σ of X,
respectively.

Fixing θ ∈ Rn the assumed convergence in 2-mean of X(k) to X also implies the

convergence in 2-mean, and hence in probability, of (θ,X(k)) to (θ,X). Hence,
by bounded convergence, ΦX(k)(θ) → ΦX(θ) for each fixed θ ∈ R

n (see Corollary

1.4.28). Since ΦX(k)(θ) = e−
1
2 (θ,Σ

(k)θ)ei(θ,µ
(k)) for each k, the convergence of the

parameters (µ(k),Σ(k)) implies that the function ΦX(θ) must also be of such form.
That is, necessarily X has a Gaussian distribution, whose parameters are the limits

of the corresponding parameters of X(k), as claimed.

The next proposition provides an alternative to Definition 3.2.8.

Proposition 3.2.16. A random vector X has the Gaussian distribution if and
only if (

∑n
i=1 ajiXi, j = 1, . . . ,m) is a Gaussian random vector for any non-random

coefficients a11, a12, . . . , amn ∈ R (c.f. [GS01, Definition 4.9.7]).

It is usually much easier to check Definition 3.2.8 than to check the conclusion of
Proposition 3.2.16. However, it is often very convenient to use the latter en-route
to the derivation of some other property of X.
We are finally ready to define the class of Gaussian stochastic processes.

Definition 3.2.17. A stochastic process (S.P.) {Xt, t ∈ I} is Gaussian if for
all n < ∞ and all t1, t2, · · · , tn ∈ I, the random vector (Xt1 , Xt2 , · · · , Xtn) has a
Gaussian distribution, that is, all finite dimensional distributions of the process are
Gaussian.

To see that you understood well the definitions of Gaussian vectors and processes,
convince yourself that the following corollary holds.

Corollary 3.2.18. All distributional properties of Gaussian processes are deter-
mined by the mean µ(t) = E(Xt) of the process and its auto-covariance function
ρ(t, s) = E[(Xt − µ(t)) (Xs − µ(s))].
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Applying Proposition 3.2.14 for the Gaussian vector X = (Yt2 − Yt1 , . . . , Ytn −
Ytn−1) of increments of a Gaussian stochastic process {Yt} (with arbitrary finite n
and 0 ≤ t1 < t2 < · · · < tn), we conclude from Definition 3.1.6 that

Proposition 3.2.19. If Cov(Yt+h − Yt, Ys) = 0 for a Gaussian stochastic process
{Yt}, all t ≥ s and h > 0, then the S.P. {Yt} has uncorrelated hence independent
increments (which is thus also equivalent to E(Yt+h−Yt|σ(Ys, s ≤ t)) = E(Yt+h−Yt)
for any t ≥ 0 and h > 0).

The special class of Gaussian processes plays a key role in our construction of
the Brownian motion. When doing so, we shall use the following extension of
Proposition 3.2.15.

Proposition 3.2.20. If the S.P. {Xt, t ∈ I} and the Gaussian S.P. {X(k)
t , t ∈ I}

are such that E[(Xt − X
(k)
t )2] → 0 as k → ∞, for each fixed t ∈ I, then Xt is a

Gaussian S.P. with mean and auto-covariance functions that are the pointwise limits

of those for X
(k)
t .

Proof. Fixing n < ∞ and t1, t2, · · · , tn ∈ I, apply Proposition 3.2.15 for

the sequence of Gaussian random vectors (X
(k)
t1 , X

(k)
t2 , · · · , X(k)

tn ) to see that the
distribution of (Xt1 , Xt2 , · · · , Xtn) is Gaussian. Since this applies for all finite
dimensional distributions of the S.P. {Xt, t ∈ I} we are done (see Definition
3.2.17).

Here is the derivation of the C.L.T. statement of Example 1.4.13 and its extension
towards a plausible construction of the Brownian motion.

Exercise 3.2.21. Consider the random variables Ŝk of Example 1.4.13.

(a) Applying Proposition 3.2.6 verify that the corresponding characteristic
functions are

ΦŜk
(θ) = [cos(θ/

√
k)]k .

(b) Recalling that δ−2 log(cos δ) → −0.5 as δ → 0, find the limit of ΦŜk
(θ)

as k → ∞ while θ ∈ R is fixed.

(c) Suppose random vectors X(k) and X in Rn are such that ΦX(k)(θ) →
ΦX(θ) as k → ∞, for any fixed θ. It can be shown that then the laws of

X(k), as probability measures on Rn, must converge weakly in the sense
of Definition 1.4.20 to the law of X. Explain how this fact allows you to

verify the C.L.T. statement Ŝn
L−→ G of Example 1.4.13.

Exercise 3.2.22. Consider the random vectors X(k) = ( 1√
k
Sk/2,

1√
k
Sk) in R2,

where k = 2, 4, 6, . . . is even, and Sk is the simple random walk of Definition 3.1.2,
with P(ξ1 = −1) = P(ξ1 = 1) = 0.5.

(a) Verify that

ΦX(k)(θ) = [cos((θ1 + θ2)/
√
k)]k/2[cos(θ2/

√
k)]k/2 ,

where θ = (θ1, θ2).
(b) Find the mean vector µ and the covariance matrix Σ of a Gaussian ran-

dom vector X for which ΦX(k)(θ) converges to ΦX(θ) as k → ∞.
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(c) Upon appropriately generalizing what you did in part (b), I claim that the
Brownian motion of Theorem 3.1.3 must be a Gaussian stochastic pro-
cess. Explain why, and guess what is the mean µ(t) and auto-covariance
function ρ(t, s) of this process (if needed take a look at Chapter 5).

We conclude with a concrete example of a Gaussian stochastic process.

Exercise 3.2.23. Let Yn =
∑n

k=1 ξkVk for i.i.d. random variables {ξk} such that
p = P(ξk = 1) = 1 − P(ξk = −1) and i.i.d. Gaussian random variables {Vk} of
zero mean and variance one that are independent of the collection {ξk}.

(a) Compute the mean µ(n) and auto-covariance function ρ(ℓ, n) for the dis-
crete time stochastic process {Yn}.

(b) Find the law of ξ1V1, explain why {Yn} is a Gaussian process and provide
the joint density fYn,Y2n(x, y) of Yn and Y2n.

3.2.3. Stationary processes. We conclude this section with a brief discus-
sion of the important concept of stationarity, that is, invariance of the law of the
process to translation of time.

Definition 3.2.24. A stochastic process {Xt} indexed by t ∈ R is called (strong
sense) stationary if its f.d.d. satisfy

Ft1,t2,...,tN (α1, α2, . . . , αN ) = P(Xt1 ≤ α1, . . . , XtN ≤ αN )

= P(Xt1+τ ≤ α1, . . . , XtN+τ ≤ αN )

= Ft1+τ,t2+τ,...,tN+τ (α1, α2, . . . , αN ) ,

for all τ ∈ R, N <∞, αi ∈ R, i = 1, . . . , N and any monotone t1 < t2 · · · < tN ∈ R.
A similar definition applies to discrete time S.P. indexed by t on the integers, just
then ti and τ take only integer values.

It is particularly easy to verify the stationarity of Gaussian S.P. since

Proposition 3.2.25. A Gaussian S.P. is stationary if and only if µ(t) = µ (a
constant) and ρ(t, s) = r(|t − s|), where r : R → R is a function of the time
difference |t − s|. (A stochastic process whose mean and auto-covariance function
satisfy these two properties is called weak sense (or covariance) stationary. In
general, a weak sense stationary process is not a strong sense stationary process
(for example, see [GS01, Example 8.2.5]). However, as the current Proposition
shows, the two notions of stationarity are equivalent in the Gaussian case.)

Convince yourself that Proposition 3.2.25 is an immediate consequence of Corol-
lary 3.2.18 (alternatively, use directly Proposition 3.2.11). For more on stationary
Gaussian S.P. solve the following exercise and see [GS01, Section 9.6] (or [Bre92,
Section 11.5] for the case of discrete time).

Exercise 3.2.26. Suppose {Xt} is a zero-mean, (weak sense) stationary process
with auto-covariance function r(t).

(a) Show that |r(h)| ≤ r(0) for all h > 0.

(b) Show that if r(h) = r(0) for some h > 0 then Xt+h
a.s.
= Xt for each t.

(c) Explain why part (c) of Exercise 3.2.13 implies that if {Xt} is a zero-
mean, stationary, Gaussian process with auto-covariance function r(t)

such that r(0) > 0, then E(Xt+h|Xt) =
r(h)
r(0)Xt for any t and h ≥ 0.
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(d) Conclude that there is no zero-mean, stationary, Gaussian process of
independent increments other than the trivial process Xt ≡ X0.

Definition 3.2.27. We say that a process {Xt, t ≥ 0} has stationary increments if
Xt+h−Xt and Xs+h−Xs have the same law for all s, t, h ≥ 0. The same definition
applies to discrete time S.P. indexed by t on the integers, just with t, s and h taking
only integer values (and if the S.P. is indexed by a non-negative integer time, then
so are the values of s, t and h).

Example 3.2.28. Clearly, a sequence of independent and identically distributed
random variables . . . , X−2, X−1, X0, X1, . . . is a discrete time stationary process.
However, many processes are not stationary. For example, the random walk Sn =∑n

i=1Xi of Definition 3.1.2 is a non-stationary S.P. when EX1 = 0 and EX2
1 = 1.

Indeed, if {Sn} was a stationary process then the law of Sn, and in particular its
second moment, would not depend on n – in contradiction with (3.1.1). Convince
yourself that every stationary process has stationary increments, but note that the
random walk Sn has stationary increments, thus demonstrating that stationary in-
crements are not enough for stationarity.

For more on stationary discrete time S.P. see [Bre92, Section 6.1], or see [GS01,
Chapter 9] for the general case.

3.3. Sample path continuity

As we have seen in Section 3.1, the distribution of the S.P. does not specify uniquely
the probability of events outside the rather restricted σ-field FX and in particular
provides insufficient information about the behavior of its supremum, as well as
about the continuity of its sample path.
Our goal in this section is thus to find relatively easy to check sufficient conditions
for the existence of a modification of the S.P. that has a somewhat “nice” sample
paths. The following definition of sample path continuity is the first step in this
direction.

Definition 3.3.1. We say that {Xt} has continuous sample path w.p.1 if P({ω :
t 7→ Xt(ω) is continuous}) = 1. Similarly, we use the term continuous modification

to denote a modification {X̃t} of a given S.P. {Xt} such that {X̃t} has continuous
sample path w.p.1.

The next definition of Hölder continuity provides a quantitative refinement of this
notion of continuity, by specifying the maximal possible smoothness of the sample
path of Xt.

Definition 3.3.2. A S.P. Yt is locally Hölder continuous with exponent γ if for
some c <∞ and a R.V. h(ω) > 0,

P({ω : sup
0≤s,t≤T, |t−s|≤h(ω)

|Yt(ω)− Ys(ω)|
|t− s|γ ≤ c}) = 1.

Remark. The word “locally” in the above definition refers to the R.V. h(ω).
When it holds for unrestricted t, s ∈ [0, T ] we say that Yt is globally (or uniformly)
Hölder continuous with exponent γ. A particular important special case is that of
γ = 1, corresponding to Lipschitz continuous functions.
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Equipped with Definition 3.3.2 our next theorem gives a very useful criterion for
the existence of a continuous modification (and even yields a further “degree of
smoothness” in terms of the Hölder continuity of the sample path).

Theorem 3.3.3 (Kolmogorov’s continuity theorem). Given a S.P. {Xt, t ∈ [0, T ]},
suppose there exist α, β, c, h0 > 0 such that

(3.3.1) E(|Xt+h −Xt|α) ≤ ch1+β , for all 0 ≤ t, t+ h ≤ T, 0 < h < h0 .

Then, there exists a continuous modification Yt of Xt such that Yt is also locally
Hölder continuous with exponent γ for any 0 < γ < β/α.

Remark. In case you have wondered why exponent γ near (1 + β)/α does not
work in Theorem 3.3.3, read its proof, and in particular, the derivation of [KS97,
inequality (2.9), page 54]. Or, see [Oks03, Theorem 2.6, page 10], for a somewhat
weaker result.

It is important to note that condition (3.3.1) of Theorem 3.3.3 involves only the
joint distribution of (Xt, Xt+h) and as such is verifiable based on the f.d.d. of the
process. In particular, either all versions of the given S.P. satisfy (3.3.1) or none of
them does.
The following example demonstrates that we must have β > 0 in (3.3.1) to deduce
the existence of a continuous modification.

Example 3.3.4. Consider the stochastic process Xt(ω) = I{U≤t}(ω), t ∈ [0, 1],
where U is a Uniform[0, 1] random variable (that is, U(ω) = ω on the probability
space (R,B, U) of Example 1.1.11). Note that |Xt+h−Xt| = 1 if 0 ≤ t < U ≤ t+h,
and |Xt+h −Xt| = 0 otherwise. So, E(|Xt+h −Xt|α) = U((t, t + h]) ≤ h for any
h > 0 and t ≥ 0. That is, {Xt, t ≥ 0} satisfies (3.3.1) with c = 1, β = 0 any α
and h0. However, clearly the sample path of Xt(ω) is discontinuous at t = U(ω)
whenever ω 6= 0. That is, almost surely {Xt} has discontinuous sample paths (and
it is further possible to show that this S.P. has no continuous modification).

The following application of Kolmogorov’s continuity theorem demonstrates the
importance of choosing wisely the free parameter α in this theorem.

Exercise 3.3.5. Suppose the stochastic process Xt is such that E(Xt) = 0 and
E(X2

t ) = 1 for all t ∈ [0, T ].

(a) Show that |E(XtXt+h)| ≤ 1 for any h > 0 and t ∈ [0, T − h].
(b) Suppose that for some λ <∞, p > 1 and h0 > 0,

(3.3.2) E(XtXt+h) ≥ 1− λhp for all 0 < h ≤ h0 .

Using Kolmogorov’s continuity theorem show that then Xt has a contin-
uous modification.

(c) Suppose Xt is a Gaussian stochastic process such that E(Xt) = 0 and
E(X2

t ) = 1 for all t ∈ [0, T ]. Show that if Xt satisfies the inequality
(3.3.2) for some λ < ∞, p > 0 and h0 > 0, then for any 0 < γ < p/2,
the process Xt has a modification which is locally Hölder continuous with
exponent γ.
Hint: see Section 5.1 for the moments of Gaussian random variable.

As we show next, there exist non-Gaussian S.P.-s satisfying (3.3.2) with p = 1 for
which there is no continuous modification.
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Example 3.3.6. One such example is the “random telegraph signal” Rt which is
defined as follows. Let τi, i = 1, 2, . . . be independent random times, each having
the Exponential(1) distribution, that is, P(τi ≤ x) = 1 − e−x for all i and x ≥ 0.
Starting at R0 ∈ {−1, 1} such that P(R0 = 1) = 1/2, the S.P. Rt alternately

jumps between −1 and +1 at the random times sk =
∑k

i=1 τi for k = 1, 2, 3, . . ., so
Rt ∈ {−1, 1} keeps the same value in each of the intervals (sk, sk+1). Since almost
surely s1 <∞, this S.P. does not have a continuous modification. However,

E(RtRt+ε) = P(Rt = Rt+ε)−P(Rt 6= Rt+ε) = 1− 2P(Rt 6= Rt+ε) ,

and since for any t ≥ 0 and ε > 0,

ε−1P(Rt 6= Rt+ε) ≤ ε−1P(τi ≤ ε) = ε−1(1 − e−ε) ≤ 1 ,

we see that Rt indeed satisfies (3.3.2) with p = 1 and λ = 2.

The stochastic process Rt of Example 3.3.6 is a special instance of the continuous-
time Markov jump processes, which we study in Section 6.3. Though the sample
path of this process is almost never continuous, it has the right-continuity property
of the following definition, as is the case for all continuous-time Markov jump
processes of Section 6.3.

Definition 3.3.7. We say that a S.P. Xt has right-continuous with left limits
(in short, RCLL) sample path, if for a.e. ω ∈ Ω, the sample path Xt(ω) is right-
continuous and of left-limits at any t ≥ 0 (that is, for h ↓ 0 both Xt+h(ω) → Xt(ω)
and the limit of Xt−h(ω) exists). Similarly, a modification having RCLL sample
path with probability one is called RCLL modification of the S.P.

Remark. To practice your understanding, check that any S.P. having continuous
sample path also has RCLL sample path (in particular, the Brownian motion of
Section 5.1 is such). The latter property plays a major role in continuous-time
martingale theory, as we shall see in Sections 4.2 and 4.3.2. For more on RCLL
sample path see [Bre92, Section 14.2].

Perhaps you expect any two S.P.-s that are modifications of each other to have
(a.s.) indistinguishable sample path, i.e. P(Xt = Yt for all t ∈ I) = 1. This is
indeed what happens for discrete time, but in case of continuous time, in general
such property may fail, though it holds when both S.P.-s have right-continuous
sample paths (a.s.).

Exercise 3.3.8.

(a) Let {Xn}, {Yn} be discrete time S.P.-s that are modifications of each
other. Show that P(Xn = Yn for all n ≥ 0) = 1.

(b) Let {Xt}, {Yt} be continuous time S.P.-s that are modifications of each
other. Suppose that both processes have right-continuous sample paths
a.s. Show that P(Xt = Yt for all t ≥ 0) = 1.

(c) Provide an example of two S.P.-s which are modifications of one another
but which are not indistinguishable.

We conclude with a hierarchy of the sample path properties which have been
considered here.

Proposition 3.3.9. The following implications apply for the sample path of any
stochastic process:

Hölder continuity ⇒ Continuous w.p.1 ⇒ RCLL .
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Proof. The stated relations between local Hölder continuity, continuity and
right-continuity with left limits hold for any function f : [0,∞) → R. Considering
f(t) = Xt(ω) for a fixed ω ∈ Ω leads to the corresponding relation for the sample
path of the S.P.

All the S.P. of interest to us shall have at least a RCLL modification, hence with
all properties implied by it, and unless explicitly stated otherwise, hereafter we
always assume that we are studying the RCLL modification of the S.P. in question.

The next theorem shows that objects like Yt =
∫ t

0
Xsds are well defined under

mild conditions and is crucial for the successful rigorous development of stochastic
calculus.

Theorem 3.3.10 (Fubini’s theorem). If Xt has RCLL sample path and for some
interval I and σ-field H, almost surely

∫
I E[|Xt| |H]dt is finite then almost surely∫

I
Xtdt is finite and ∫

I

E[Xt|H] dt = E [

∫

I

Xt dt|H] .

Remark. Taking H = {∅,Ω} we get as a special case of Fubini’s theorem that∫
I EXt dt = E (

∫
I Xt dt) whenever

∫
I E|Xt|dt is finite.

Here is a converse of Fubini’s theorem, where the differentiability of the sample
path t 7→ Xt implies the differentiability of the mean t 7→ EXt of a S.P.

Exercise 3.3.11. Let {Xt, t ≥ 0} be a stochastic process such that for each ω ∈ Ω
the sample path t 7→ Xt(ω) is differentiable at any t ≥ 0.

(a) Verify that ∂
∂tXt is a random variable for each fixed t ≥ 0.

(b) Suppose further that there is an integrable random variable Y such that
|Xt −Xs| ≤ |t − s|Y for almost every ω ∈ Ω and all t, s ≥ 0. Using the
dominated convergence theorem, show that t 7→ EXt is then differentiable
with a finite derivative such that for all t ≥ 0,

d

dt
E(Xt) = E

( ∂
∂t
Xt

)
.





CHAPTER 4

Martingales and stopping times

In this chapter we study a collection of stochastic processes called martingales.
Among them are some of the S.P. we already met, namely the random walk (in
discrete time) and the Brownian motion (in continuous time). Many other S.P.
found in applications are also martingales. We start in Section 4.1 with the simpler
setting of discrete time martingales and filtrations (also called discrete parameter
martingales and filtrations). The analogous theory of continuous time (or param-
eter) filtrations and martingales is introduced in Section 4.2, taking care also of
sample path (right)-continuity. As we shall see in Section 4.3, martingales play a
key role in computations involving stopping times. Martingales share many other
“nice” properties, chiefly among which are tail bounds and convergence theorems.
Section 4.4 deals with martingale representations and tail inequalities (for both
discrete and continuous time). These lead to the various convergence theorems we
present in Section 4.5. To demonstrate the power of martingale theory we also
analyze in Section 4.6 the extinction probabilities of branching processes.

4.1. Discrete time martingales and filtrations

Subsection 4.1.1 introduces the concepts of filtration and martingale with some
illustrating examples. As shown in Subsection 4.1.2, square-integrable martingales
are analogous to zero-mean, orthogonal increments. The related super-martingales
and sub-martingales are the subject of Subsection 4.1.3. For additional examples see
[GS01, Sections 12.1, 12.2 and 12.8] or [KT75, Section 6.1] (for discrete time MGs),
[KT75, Section 6.7] (for filtrations), and [Ros95, Section 7.3] (for applications to
random walks).

4.1.1. Martingales and filtrations, definition and examples. A filtra-
tion represents any procedure of collecting more and more information as time
goes on. Our starting point is the following rigorous mathematical definition of a
(discrete time) filtration.

Definition 4.1.1. A filtration is a non-decreasing family of sub-σ-fields {Fn} of
our measurable space (Ω,F). That is, F0 ⊆ F1 ⊆ F2 ⊆ · · · ⊆ Fn · · · ⊆ F and Fn

is a σ-field for each n.

Given a filtration, we are interested in S.P. such that for each n the information
gathered by that time suffices for evaluating the value of the n-th element of the
process. That is,

Definition 4.1.2. A S.P. {Xn, n = 0, 1, . . .} is adapted to a filtration {Fn} if
ω 7→ Xn(ω) is a R.V. on (Ω,Fn) for each n, that is, if σ(Xn) ⊆ Fn for each n.

At this point you should convince yourself that {Xn} is adapted to the filtration
{Fn} if and only if σ(X0, X1, . . . , Xn) ⊆ Fn for all n. That is,

67
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Definition 4.1.3. The filtration {Gn} with Gn = σ(X0, X1, · · · , Xn) is the min-
imal filtration with respect to which {Xn} is adapted. We therefore call it the
canonical filtration for the S.P. {Xn}.
Whenever clear from the context what it means, we shall use the notation Xn

both for the whole S.P. {Xn} and for the n-th R.V. of this process, and likewise we
may sometimes use Fn to denote the whole filtration {Fn}.
A martingale consists of a filtration and an adapted S.P. which has the property of
being a “fair game”, that is, the expected future reward given current information
is exactly the current value of the process. We now make this into a rigorous
definition.

Definition 4.1.4. A martingale (denoted MG) is a pair (Xn,Fn), where {Fn} is
a filtration and Xn an integrable (i.e. E|Xn| < ∞), S.P. adapted to this filtration
such that

(4.1.1) E[Xn+1|Fn] = Xn ∀n, a.s.

The slower a filtration n 7→ Fn grows, the easier it is for an adapted S.P. to be a
martingale. That is, if Hn ⊆ Fn for all n and S.P. {Xn} adapted to filtration {Hn}
is such that (Xn,Fn) is a martingale, then you can show using the tower property
that (Xn,Hn) is also a martingale. To check your understanding of the preceding,
and more generally, of what a martingale is, solve the next exercise.

Exercise 4.1.5. Suppose (Xn,Fn) is a martingale. Show that then {Xn} is also
a martingale with respect to its canonical filtration and that a.s. E[Xℓ|Fn] = Xn

for all ℓ > n.

In view of Exercise 4.1.5, unless explicitly stated otherwise, when we say that
{Xn} is a MG we mean using the canonical filtration σ(Xk, k ≤ n).

Exercise 4.1.6. Provide an example of a probability space (Ω,F ,P), a filtration
{Fn} and a stochastic process {Xn} adapted to {Fn} such that:

(a) {Xn} is a martingale with respect to its canonical filtration but (Xn,Fn)
is not a martingale.

(b) Provide a probability measure Q on (Ω,F) under which {Xn} is not a
martingale even with respect to its canonical filtration.

Hint: Go for a simple construction. For example, Ω = {a, b}, F0 = F = 2Ω,
X0 = 0 and Xn = X1 for all n ≥ 1.

We next provide a convenient alternative characterization of the martingale prop-
erty in terms of the martingale differences .

Proposition 4.1.7. If Xn =
∑n

i=0Di then the canonical filtration for {Xn} is
the same as the canonical filtration for {Dn}. Further, (Xn,Fn) is a martingale if
and only if {Dn} is an integrable S.P., adapted to {Fn}, such that E(Dn+1|Fn) = 0
a.s. for all n.

Proof. Since the transformation from (X0, . . . , Xn) to (D0, . . . , Dn) is contin-
uous and invertible, it follows from Corollary 1.2.17 that σ(Xk, k ≤ n) = σ(Dk, k ≤
n) for each n. By Definition 4.1.3 we see that {Xn} is adapted to a filtration
{Fn} if and only if {Dn} is adapted to this filtration. It is very easy to show by
induction on n that E|Xk| < ∞ for k = 0, . . . , n if and only if E|Dk| < ∞ for
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k = 0, . . . , n. Hence, {Xn} is an integrable S.P. if and only if {Dn} is. Finally, with
Xn measurable on Fn it follows from the linearity of the C.E. that

E[Xn+1|Fn]−Xn = E[Xn+1 −Xn|Fn] = E[Dn+1|Fn] ,

and the alternative expression for the martingale property follows from (4.1.1).

In view of Proposition 4.1.7 we call Dn = Xn − Xn−1 for n ≥ 1 and D0 = X0

the martingale differences associated with a martingale {Xn}. We now detail a few
simple examples of martingales, starting with the random walk of Definition 3.1.2.

Example 4.1.8. The random walk Sn =
∑n

k=1 ξk, with ξk independent, identically
distributed, such that E|ξ1| <∞ and Eξ1 = 0, is a MG (for its canonical filtration).
More generally, {Sn} is a MG even when the independent and integrable R.V. ξk
of zero mean have non-identical distributions. Further, the canonical filtration may
be replaced by the filtration σ(ξ1, · · · , ξn). Indeed, this is just an application of
Proposition 4.1.7 for the case where the differences Dk = Sk−Sk−1 = ξk, k ≥ 1 (and
D0 = 0), are independent, integrable and E[Dn+1|D0, D1, . . . , Dn] = E(Dn+1) = 0
for all n ≥ 0 by our assumption that Eξk = 0 for all k. Alternatively, for a
direct proof recall that E|Sn| ≤

∑n
k=1 E|ξk| < ∞ for all n, that is, the S.P. Sn is

integrable. Moreover, since ξn+1 is independent of σ(S1, . . . , Sn) and E(ξn+1) = 0,
we have that

E[Sn+1|S1, · · · , Sn] = E[Sn|S1, · · · , Sn]+E[ξn+1|S1, · · · , Sn] = Sn+E(ξn+1) = Sn ,

implying that {Sn} is a MG for its canonical filtration.

Exercise 4.1.9. Let {Fn} be a filtration and X an integrable R.V. Define Yn =
E(X |Fn) and show that (Yn,Fn) is a martingale. How do you interpret Yn?

Our next example takes an arbitrary S.P. {Vn} and creates a MG by considering∑n
k=1 Vkξk for an appropriate auxiliary sequence {ξk} of R.V.

Example 4.1.10. Let Yn =
∑n

k=1 Vkξk, where {Vn} is an arbitrary bounded S.P.
and {ξn} is a sequence of integrable R.V. such that for n = 0, 1, . . . both E(ξn+1) = 0
and ξn+1 is independent of Fn = σ(ξ1, . . . , ξn, V1, . . . , Vn+1). Then, {Yn} is a MG
for its canonical filtration and even for the possibly larger filtration {Fn}. This is yet
another application of Proposition 4.1.7, now with the differences Dk = Yk−Yk−1 =
Vkξk, k ≥ 1 (and D0 = 0). Indeed, we assumed ξk are integrable and |Vk| ≤ Ck

for some non-random finite constants Ck, resulting with E|Dk| ≤ CkE|ξk| < ∞,
whereas

E[Dn+1|Fn] = E[Vn+1ξn+1|Fn] = Vn+1E[ξn+1|Fn] (take out what is known)

= Vn+1E[ξn+1] = 0 (zero mean ξn+1 is independent of Fn),

giving us the martingale property.

A special case of Example 4.1.10 is when the auxiliary sequence {ξk} is indepen-
dent of the given S.P. {Vn} and consists of zero-mean, independent, identically dis-
tributed R.V. For example, random i.i.d. signs ξk ∈ {−1, 1} (with P(ξk = 1) = 1

2 )
are commonly used in discrete mathematics applications (for other martingale ap-
plications c.f. [AS00, Chapter 7]).
Example 4.1.10 is a special case of the powerful martingale transform method. To
explore this further, we first extract what was relevant in this example about the
relation between the sequence {Vn} and the filtration {Fn}.
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Definition 4.1.11. We call a sequence {Vn} previsible (or predictable) for the
filtration {Fn} if Vn is measurable on Fn−1 for all n ≥ 1.

The other relevant property of Example 4.1.10 is the fact that Xn =
∑n

k=1 ξk is a
MG for the filtration {Fn} (which is merely a re-run on Example 4.1.8, now with the
excess but irrelevant information carried by the S.P. {Vn}). Having understood the
two key properties of Example 4.1.10, we are ready for the more general martingale
transform.

Theorem 4.1.12. Let (Xn,Fn) be a MG and {Vn} be a previsible sequence for the
same filtration. The sequence of R.V.

Yn =

n∑

k=1

Vk(Xk −Xk−1) ,

called the martingale transform of V· with respect to X·, is then a MG with respect
to the filtration {Fn}, provided |Vn| ≤ Cn for some non-random constants Cn <∞,
or more generally E|Vn|q < ∞ and E|Xn|p < ∞ for all n and some 1 ≤ p, q < ∞
such that 1

q + 1
p = 1.

Remark. The integrability conditions imposed in Theorem 4.1.12 ensure that
E|Vk||Xk| < ∞, hence that the MG transform {Yn} is an integrable S.P. Once
this is established, {Yn} would be a MG, so we can state different versions of the
theorem by further varying our integrability conditions.

Here is a direct example of the martingale transform method.

Example 4.1.13. The S.P. Yn =
∑n

k=1Xk−1(Xk − Xk−1) is a MG whenever
Xn ∈ L2(Ω,F ,P) is a MG (just note that the sequence Vn = Xn−1 is previsible for
any filtration {Fn} with respect to which {Xn} is adapted and take p = q = 2 in
Theorem 4.1.12).

A classical martingale is derived from the random products of Example 3.1.4.

Example 4.1.14. Consider the integrable S.P. Mn =
∏n

i=1 Yi for strictly pos-
itive R.V. Yi. By Corollary 1.2.17 its canonical filtration coincides with Gn =
σ(Y1, · · · , Yn) and since E(Mn+1|Gn) = E(Yn+1Mn|Gn) =MnE(Yn+1|Gn), the MG
condition for {Mn} is just E(Yn+1|Y1, · · · , Yn) = 1 a.s. for all n. In the context of
i.i.d. Yi as in Example 3.1.4 we see that {Mn} is a MG if and only if E(Y1) = 1,
corresponding to “neutral return rate”. Note that this is not the same as the con-
dition E(log Y1) = 0 under which the associated random walk Sn = logMn is a
MG.

4.1.2. Orthogonal increments and square-integrable martingales. In
case E(X2

n) <∞ for all n, we have an alternative definition of being a MG, some-
what reminiscent of our definition of the conditional expectation.

Proposition 4.1.15. A S.P. Xn ∈ L2(Ω,F ,P) adapted to the filtration {Fn} is
a MG if and only if E[(Xn+1 −Xn)Z] = 0 for any Z ∈ L2(Ω,Fn,P).

Proof. This follows from the definition of MG, such that E[Xn+1|Fn] = Xn,
together with the definition of the C.E. via orthogonal projection on L2(Ω,Fn,P)
as in Definition 2.1.3.
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A martingale {Xn} such that E(X2
n) < ∞ for all n is called L2-MG, or square-

integrable MG. We gain more insight to the nature of such MGs by reformulating
Proposition 4.1.15 in terms of the martingale differences Dn = Xn−Xn−1. To this
end, we have the following definition.

Definition 4.1.16. We say that Dn ∈ L2(Ω,F ,P) is an orthogonal sequence
of R.V. if E[Dnh(D0, D1, . . . , Dn−1)] = E[Dn]E[h(D0, . . . , Dn−1)] for any n ≥
1 and every Borel function h : Rn → R such that E[h(D0, . . . , Dn−1)

2] < ∞.
Alternatively, in view of Definition 2.1.3 and Proposition 1.2.14 this is merely the
statement that E[Dn|D0, D1, . . . , Dn−1] = E[Dn] for all n.

It is possible to extend Proposition 1.4.40 to the statement that the random vari-
ables Dk ∈ L2(Ω,F ,P) are mutually independent if and only if

E[g(Dn)h(D0, D1, . . . , Dn−1)] = E[g(Dn)]E[h(D0, . . . , Dn−1)]

for every n and any Borel functions h : Rn → R and g : R → R such that
E[h(D0, . . . , Dn−1)

2] < ∞ and E[g(Dn)
2] < ∞. In particular, independence im-

plies orthogonality (where g(·) has to be linear), which in turn implies that the
R.V. Dn are uncorrelated, that is, E(DnDi) = E(Dn)E(Di) for all 0 ≤ i < n <∞
(i.e. both g(·) and h(·) have to be linear functions).
As we show next, for square-integrable S.P. the martingale property amounts to
having zero-mean, orthogonal differences. It is thus just the right compromise
between the perhaps too restrictive requirement of having zero-mean, independent
differences, and the ineffective property of just having zero-mean, uncorrelated
differences.

Proposition 4.1.17. A S.P. Xn ∈ L2(Ω,F ,P) is a MG for its canonical filtration
if and only if it has an orthogonal, zero-mean differences sequence Dn = Xn−Xn−1,
n ≥ 1.

Proof. In view of Definition 4.1.16, this is just a simple reformulation of
Proposition 4.1.15.

The MG property is especially simple to understand for a Gaussian S.P. As we
have seen a necessary condition for the MG property is to have EDn = 0 and
E(DnDi) = 0 for all 0 ≤ i < n. With the Gaussian vector D = (D0, · · · , Dn)
having uncorrelated coordinates, we know that the corresponding matrix Σ has
zero entries except at the main-diagonal j = k (see Proposition 3.2.11). Hence, by
Definition 3.2.8, the characteristic function ΦD(θ) is of the form of

∏n
k=0 ΦDk

(θk).
This in turn implies that the coordinates Dk of this random vector are mutually
independent (see Proposition 3.2.6). In conclusion, for a Gaussian S.P. having
independent, orthogonal or uncorrelated differences are equivalent properties, which
together with each of these differences having a zero mean is also equivalent to the
MG property.

4.1.3. Sub-martingales and super-martingales. Often when operating on
a MG, we naturally end up with a sub or super martingale, as defined below.
Moreover, these processes share many of the properties of martingales, so it is
useful to develop a unified theory for them.

Definition 4.1.18. A sub-martingale (denoted subMG) is an integrable S.P. {Xn},
adapted to the filtration {Fn}, such that

E[Xn+1|Fn] ≥ Xn ∀n, a.s.
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A super-martingale (denoted supMG) is an integrable S.P. {Xn}, adapted to the
filtration {Fn} such that

E[Xn+1|Fn] ≤ Xn ∀n, a.s.

(A typical S.P. {Xn} is neither a subMG nor a supMG, as the sign of the R.V.
E[Xn+1|Fn]−Xn may well be random, or possibly dependent upon the time index
n).

Remark 4.1.19. Note that {Xn} is a subMG if and only if {−Xn} is a supMG.
By this identity, all results about subMG-s have dual statements for supMG-s and
vice verse. We often state only one out of each such pair of statements. Further,
{Xn} is a MG if and only if {Xn} is both a subMG and a supMG. As a result,
every statement holding for either subMG-s or supMG-s, also hold for MG-s.

Example 4.1.20. In the context of Example 4.1.14, if E(Yn+1|Y1, · · · , Yn) ≥ 1
a.s. for all n then {Mn} is a subMG, and if E(Yn+1|Y1, · · · , Yn) ≤ 1 a.s. for all n
then {Mn} is a supMG. Such processes appear for example in mathematical finance,
where Yi denotes the random proportional change in the value of a risky asset at
the i-th trading round. So, positive conditional mean return rate yields a subMG
while negative conditional mean return rate gives a supMG.

Remark 4.1.21. If {Xn} a subMG, then necessarily n 7→ EXn is non-decreasing,
since by the tower property of (conditional) expectation

E[Xn] = E[E[Xn|Fn−1]] ≥ E[Xn−1] ,

for all n ≥ 1. Convince yourself that by Remark 4.1.19 this implies that if {Xn}
is a supMG then n 7→ EXn is non-increasing, hence for a MG {Xn} we have that
E(Xn) = E(X0) for all n.

We next detail a few examples in which subMG-s or supMG-s naturally appear,
starting with an immediate consequence of Jensen’s inequality

Exercise 4.1.22. Suppose (Xn,Fn) is a martingale and Ψ : R 7→ R is a convex
function such that E[|Ψ(Xn)|] <∞. Show that (Ψ(Xn),Fn) is a sub-martingale.
Hint: Use Proposition 2.3.9.

Remark. Some examples of convex functions for which the above exercise is
commonly applied are Ψ(x) = |x|p, p ≥ 1, Ψ(x) = ex and Ψ(x) = x log x (the latter
only for x > 0). Taking instead a concave function Ψ(·) leads to a supMG, as for
example when Ψ(x) = xp, p ∈ (0, 1) or Ψ(x) = log x, both restricted to x > 0.

Here is a concrete application of Exercise 4.1.22.

Exercise 4.1.23. Let ξ1, ξ2, . . . be independent with Eξi = 0 and Eξ2i = σ2
i .

(a) Let Sn =
∑n

i=1 ξi and s
2
n =

∑n
i=1 σ

2
i . Show that {S2

n} is a sub-martingale
and {S2

n − s2n} is a martingale.
(b) Suppose also that mn =

∏n
i=1 E(eξi) < ∞. Show that {eSn} is a sub-

martingale and Mn = eSn/mn is a martingale.

A special case of Exercise 4.1.23 is the random walk Sn =
∑n

k=1 ξk. Assuming in
addition to E(ξ1) = 0 that alsoEξ21 <∞ we see that (S2

n, σ(ξ1, · · · , ξn)) is a subMG.
Further, s2n = E(S2

n) = nE(ξ21) (see (3.1.1)), hence S2
n − nE(ξ21) is a MG. Likewise,

eSn is a subMG for the same filtration whenever E(ξ1) = 0 and E(eξ1) < ∞.
Though eSn is not a MG (unless ξi = 0 a.s.), the normalized Mn = eSn/[E(eξ)]n is
merely the MG of Example 4.1.14 for the product of i.i.d. Yi = eξi/E(eξ).
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4.2. Continuous time martingales and right continuous filtrations

In duality with Definitions 4.1.1 and 4.1.4 we define the continuous time filtrations
and martingales as follows.

Definition 4.2.1. The pair (Xt,Ft), t ≥ 0 real-valued, is called a continuous
time martingale (in short MG), if:

(a). The σ-fields Ft ⊆ F , t ≥ 0 form a continuous time filtration, that is, Ft ⊆
Ft+h, for all t ≥ 0 and h > 0.

(b). The continuous time S.P. {Xt} is integrable and adapted to this filtration.
That is, E|Xt| <∞ and σ(Xt) ⊆ Ft for all t ≥ 0.

(c). For any fixed t ≥ 0 and h > 0, the identity E(Xt+h|Ft) = Xt holds a.s.

Similar definitions apply to S.P. {Xt} indexed by t ∈ I for an interval I ⊆ R, just
requiring also that in (a)-(c) both t and t+ h be in I.

• Replacing the equality in (c) of Definition 4.2.1 with ≥ or with ≤, defines the
continuous time subMG, or supMG, respectively. These three groups of S.P. are
related in the same manner as in the discrete time setting (c.f. Remark 4.1.19).

• Similar to Remark 4.1.21 we have that if {Xt} is a subMG then EXt ≥ EXs for
all t ≥ s, and if {Xt} is a supMG then EXt ≤ EXs for all t ≥ s, so EXt = EX0

for all t when {Xt} is a MG.

• Let σ(Xs, 0 ≤ s ≤ t) denote the smallest σ-field containing σ(Xs) for each s ≤ t
(compare with FX of Section 3.1). In analogy with Definition 4.1.3 and Exercise
4.1.5, the canonical filtration for a continuous time S.P. {Xt} is σ(Xs, 0 ≤ s ≤ t).
Further, as you check below, if (Xt,Ft) is a MG, then (Xt, σ(Xs, 0 ≤ s ≤ t)) is
also a MG. Hence, as in the discrete time case, our default is to use the canonical
filtration when studying MGs (or sub/supMGs).

Exercise 4.2.2. Let Gt = σ(Xs, s ≤ t). Show that

(a) If (Xt,Ft), t ≥ 0 is a continuous time martingale for some filtration
{Ft}, then (Xt,Gt), t ≥ 0 is also a martingale.

(b) If (Xt,Gt) is a continuous time sub-martingale and E(Xt) = E(X0) for
all t ≥ 0, then (Xt,Gt) is also a martingale.

To practice your understanding, verify that the following identity holds for any
square-integrable MG (Xt,Ft)

(4.2.1) E[X2
t |Fs]−X2

s = E[(Xt −Xs)
2|Fs] for any t ≥ s ≥ 0

and upon taking expectations deduce that for such MG the function EX2
t is non-

decreasing in t.

We have the following analog of Example 4.1.8, showing that in particular, the
Brownian motion is a (continuous time) MG.

Proposition 4.2.3. Any integrable S.P. {Mt} of independent increments (see
Definition 3.1.6), and constant mean (i.e. EMt = EM0), is a MG.

Proof. Recall that a process Mt has independent increments if Mt+h −Mt is
independent of Gt = σ(Ms, 0 ≤ s ≤ t), for all h > 0 and t ≥ 0. We assume that
in addition to having independent increments, also E|Mt| < ∞ and EMt = EM0
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for all t. Then, E(Mt+h −Mt|Gt) = E(Mt+h −Mt) = 0. Since Mt is measurable
on Gt, we deduce that E(Mt+h|Gt) = Mt, that is, {Mt} is a MG (for its canonical
filtration Gt).

Conversely, as you check below, any Gaussian martingale Mt is square-integrable
and of independent increments, in which case M2

t −EM2
t is also a martingale.

Exercise 4.2.4.

(a) Deduce from the identity (4.2.1) that if the MG {Mt, t ≥ 0} of Proposition
4.2.3 is square-integrable, then (M2

t −At,Gt) is a MG for Gt = σ(Ms, s ≤
t) and the non-random, non-decreasing function At = EM2

t −EM2
0 .

(b) Show that if a Gaussian S.P. {Mt} is a MG, then it is square-integrable
and of independent increments.

(c) Conclude that (M2
t − At,Gt) is a MG for At = EM2

t − EM2
0 and any

Gaussian MG {Mt}.
Some of the many MGs associated with the Brownian motion are provided next
(see [KT75, Section 7.5] for more).

Exercise 4.2.5. Let Gt denote the canonical filtration of a Brownian motion Wt.

(a) Show that for any λ ∈ R, the S.P. Mt(λ) = exp(λWt − λ2t/2), is a
continuous time martingale with respect to Gt.

(b) Explain why dk

dλkMt(λ) are also martingales with respect to Gt.
(c) Compute the first three derivatives in λ of Mt(λ) at λ = 0 and deduce

that the S.P. W 2
t − t and W 3

t − 3tWt are also MGs.

Our next example is of continuous time subMG-s and supMG-s that are obtained
in the context of Example 3.1.4 and play a major role in modeling the prices of
risky assets.

Example 4.2.6. For each n ≥ 1 let {S(n)
k } denote the random walk corresponding

to i.i.d. increments ξ
(n)
i each having the N(r/n, 1/n) law (i.e. ξ

(n)
i is a Gaussian

random variable of mean r/n and variance 1/n). The risky asset value at time

t = k/n is exp(S
(n)
k ), modeling discrete trading rounds held each 1/n units of time

with r denoting the mean return rate per unit time. So, consider the linear in-

terpolation between the points (k/n, exp(S
(n)
k )) in the plane, for k = 0, 1, . . . , n,

which in the limit n → ∞ converge weakly to the continuous time stochastic pro-
cess Yt = exp(Wt + rt), called the Geometric Brownian motion. The Geometric
Brownian motion {Yt} is a martingale for r = −1/2, a subMG for r ≥ −1/2 and
a supMG for r ≤ −1/2 (compare with Example 3.1.4).

As we explain next, each result derived for continuous time MGs implies the
corresponding result for discrete time MGs.

Example 4.2.7. Any discrete time MG (Xn,Fn) is made into a continuous time
MG (Xt,Ft) by the interpolation Ft = Fn and Xt = Xn for n = 0, 1, 2, . . . and all
t ∈ [n, n+ 1). Indeed, this interpolation keeps the integrable {Xt} adapted to {Ft}
and the latter a filtration, so it remains only to check the MG condition (c), that
is, fixing t ≥ 0 and h > 0,

E[Xt+h|Ft] = E[Xt+h|Fℓ] = E[Xm|Fℓ] = Xℓ ,

where ℓ and m ≥ ℓ are the integer parts of t and t+h, respectively, and the rightmost
equality follows since (Xn,Fn) is a (discrete time) MG.
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While we do not pursue this subject further here, observe that the continuous time
analog of the martingale transform of Theorem 4.1.12 is the “stochastic integral”

Yt =

∫ t

0

Vs dXs ,

which for Xt a Brownian motion, is the main object of study in Stochastic calculus
or Stochastic differential equations (to which the texts [Oks03, KS97, Mik98] are
devoted). For example, the analog of Example 4.1.13 for the Brownian motion is

Yt =
∫ t

0
WsdWs, which for the appropriate definition of the stochastic integral (due

to Ito), is merely the martingale Yt =
1
2 (W

2
t −t) for the filtration Ft = σ(Ws, s ≤ t).

Note that this Ito stochastic integral coincides with martingale theory at the price of
deviating from the standard integration by parts formula. Indeed, the latter would
apply if the Brownian sample path t 7→ Wt(ω) was differentiable with probability
one. As we see in Section 5.2, this is definitely not true, so the breakup of standard
integration by parts should not come as a surprise.

Similarly to what happens for discrete-time (see Exercise 4.1.22), the subMG
property of Xt is inherited by Ψ(Xt) for convex, non-decreasing functions Ψ.

Exercise 4.2.8. Suppose (Xt,Ft) is a MG, Ψ is convex and E|Ψ(Xt)| <∞. Using
Jensen’s inequality for the C.E. check that (Ψ(Xt),Ft) is a subMG. Moreover, same
applies even when (Xt,Ft) is only a subMG, provided Ψ is also non-decreasing.

Here are additional closure properties of subMGs, supMGs and MGs.

Exercise 4.2.9. Suppose (Xt,Ft) and (Yt,Ft) are subMGs and t 7→ f(t) is a
non-decreasing, non-random function.

(a) Verify that (Xt + Yt,Ft) is a subMG and hence so is (Xt + f(t),Ft).
(b) Rewrite this, first for supMGs Xt and Yt, then in case of MGs.

Building on Exercise 1.4.32 we next note that each positive martingale (Zt,Ft)

induces a collection of probability measures P̃t that are equivalent to the restrictions
of P to Ft and satisfy a certain “martingale Bayes rule”.

Exercise 4.2.10. Given a positive MG (Zt,Ft) with EZ0 = 1 consider for each

t ≥ 0 the probability measure P̃t : Ft → R given by P̃t(A) = E[ZtIA].

(a) Show that P̃t(A) = P̃s(A) for any A ∈ Fs and 0 ≤ s ≤ t.

(b) Fixing 0 ≤ u ≤ s ≤ t and Y ∈ L1(Ω,Fs, P̃t), set Xs,u = E(Y Zs|Fu)/Zu.

With Ẽt denoting the expectation under P̃t, deduce that Ẽt(Y |Fu) = Xs,u

almost surely under P̃t (hence also under P, by Exercise 1.4.32).

Hint: Show in part (b) that Ẽt[Y IA] = E[ZuXs,uIA] = Ẽt[Xs,uIA] for any A ∈ Fu.

In the theory of continuous time S.P. it makes sense to require that each new piece
of information has a definite first time of arrival. From a mathematical point of
view, this is captured by the following concept of right-continuous filtration.

Definition 4.2.11. A filtration is called right-continuous if for any t ≥ 0,
⋂

h>0

Ft+h = Ft .

(To avoid unnecessary technicalities we further assume the “usual conditions” of a
complete probability space per Definition 1.3.4 with N ∈ F0 whenever P(N) = 0).
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For example, check that the filtration Ft = Fn for t ∈ [n, n + 1), as in the
interpolation of discrete-time MG-s (Example 4.2.7), is right-continuous. Like
many other right-continuous filtrations, this filtration has jumps, that is some-
times σ(Fs, 0 ≤ s < t) is a strict subset of Ft (i.e, for integer t), accounting for a
new piece of information arriving at time t.
As we show next, not all filtrations are right-continuous and the continuity of
the sample path of a S.P. does not guarantee that its canonical filtration is right-
continuous.

Example 4.2.12. Consider the uniform probability measure on Ω = {−1, 1} and
F = 2Ω. The process Xt(ω) = ωt clearly has continuous sample path. It is easy to
see that its canonical filtration has G0 = {∅,Ω} while Gh = F for all h > 0 and is
evidently not right-continuous at t = 0.

As we next see, right continuity of the filtration translates into a RCLL sample
path for any MG with respect to that filtration. We shall further see in Subsection
4.3.2 how right continuity of the filtration helps in the treatment of stopping times.

Theorem 4.2.13. If (Xt,Ft) is a MG with a right-continuous filtration {Ft}, then
{Xt} has a RCLL modification as in Definition 3.3.7 (see [Bre92, Theorem 14.7]
for a proof of a similar result).

Remark. You should check directly that the interpolated MGs of Example 4.2.7
have RCLL sample path with probability one. In view of Proposition 3.3.9, the
same applies for the Brownian motion and any other MG with continuous sample
path. Further, by Theorem 4.2.13, any MG with respect to the Brownian canonical
filtration, or to the interpolated filtration of Example 4.2.7, has a RCLL modifica-
tion. As we see in Sections 4.3–4.5 right continuity of the sample path allows us
to deduce many important martingale properties, such as tail bounds, convergence
results and optional stopping theorems.

4.3. Stopping times and the optional stopping theorem

This section is about stopping times and the relevance of martingales to their
study, mostly via Doob’s optional stopping theorem. The simpler concept of stop-
ping time for a discrete filtration is considered first in Subsection 4.3.1, where we
also provide a few illustrating examples of how Doob’s theorem is used. For ad-
ditional material and examples, see [GS01, Section 12.5], [Ros95, Section 6.2] or
[KT75, Section 6.4]. The more delicate issue of stopping time for a continuous
parameter filtration is dealt with in Subsection 4.3.2, with applications to hitting
times for the Brownian motion given in Section 5.2.

4.3.1. Stopping times for discrete parameter filtrations. One of the
advantages of MGs is in providing information about the law of stopping times,
which we now define in the context of a discrete parameter filtration.

Definition 4.3.1. A random variable τ taking values in {0, 1, . . . , n, . . . ,∞} is a
stopping time for the filtration {Fn} if the event {τ ≤ n} is in Fn for each finite
n ≥ 0 (c.f. [Bre92, Section 5.6]).

Intuitively speaking a stopping time is such that the decision whether to stop or
not by a given time is based on the information available at that time, and not on
future, yet unavailable information. Some examples to practice your understanding
are provided in the next exercises.
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Exercise 4.3.2. Show that τ is a stopping time for the discrete time filtration
{Fn} if and only if {τ < t} ∈ Ft for all t ≥ 0, where Ft = F[t] is the interpolated
filtration of Example 4.2.7.

Exercise 4.3.3. Suppose θ, τ, τ1, τ2, . . . are stopping times for the same (discrete
time) filtration Fn. Show that so are min(θ, τ), max(θ, τ), θ + τ , supn τn and
infn τn.

Exercise 4.3.4. Show that the first hitting time τ(ω) = min{k ≥ 0 : Xk(ω) ∈ B}
of a Borel set B ⊆ R by a sequence {Xk}, is a stopping time for the canonical
filtration Fn = σ(Xk, k ≤ n). Provide an example where the last hitting time
θ = sup{k ≥ 0 : Xk ∈ B} of a set B by the sequence, is not a stopping time (not
surprising, since we need to know the whole sequence {Xk} in order to verify that
there are no visits to B after a given time n).

As we see in Theorem 4.3.6, the MG, subMG and subMG properties are inherited
by the stopped S.P. defined next.

Definition 4.3.5. Using the notation n ∧ τ = min(n, τ(ω)), the stopped at τ
stochastic process {Xn∧τ} is given by

Xn∧τ (ω) =

{
Xn(ω), n ≤ τ(ω)

Xτ(ω)(ω), n > τ(ω)

Theorem 4.3.6. If (Xn,Fn) is a subMG (or supMG or a MG) and τ is a stopping
time for {Fn}, then (Xn∧τ ,Fn) is also a subMG, or supMG or MG, respectively
(for proof see [Bre92, Proposition 5.26]).

Corollary 4.3.7. If (Xn,Fn) is a subMG and τ is a stopping time for {Fn},
then E(Xn∧τ ) ≥ E(X0) for all n. If in addition (Xn,Fn) is a MG, then E(Xn∧τ ) =
E(X0).

The main result of this subsection is the following theorem, where the uniform
integrability of Subsection 1.4.2 comes handy (see also [GS01, Theorem 12.5.1] for
a similar result).

Theorem 4.3.8 (Doob’s optional stopping). If (Xn,Fn) is a subMG and τ < ∞
a.s. is a stopping time for the filtration {Fn} such that the sequence {Xn∧τ} is
uniformly integrable, then E(Xτ ) ≥ E(X0). If in addition (Xn,Fn) is a MG, then
E(Xτ ) = E(X0).

Proof. Note that Xn∧τ(ω)(ω) → Xτ(ω)(ω) as n → ∞, whenever τ(ω) < ∞.

Since τ < ∞ a.s. we deduce that Xn∧τ
a.s→ Xτ , hence also Xn∧τ →p Xτ (see part

(b) of Theorem 1.3.6). With {Xn∧τ} uniformly integrable, combining Theorem
1.4.23 with the preceding corollary, we obtain that in case of a subMG (Xn,Fn),

E[Xτ ] = E[ lim
n→∞

Xn∧τ ] = lim
n→∞

E[Xn∧τ ] ≥ E(X0) ,

as stated in the theorem. The same argument shows that E(Xτ ) ≤ E(X0) in case
of a supMG (Xn,Fn), hence E(Xτ ) = E(X0) for a MG (Xn,Fn).

There are many examples in which MGs are applied to provide information about
specific stopping times. We detail below one such example, pertaining to the sym-
metric simple random walk.
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Example 4.3.9. Consider the simple random walk (SRW) Sn =
∑n

k=1 ξk, with
ξk ∈ {−1, 1} independent and identically distributed R.V. such that P(ξk = 1) =
1/2, so Eξk = 0. Fixing positive integers a and b, let τa,b = inf{n ≥ 0 : Sn ≥ b, or
Sn ≤ −a}, that is, τa,b is the first time the SRW exits the interval (−a, b). Recall
that {Sn} is a MG and the first hitting time τa,b is a stopping time. Moreover,
|Sn∧τa,b

| ≤ max(a, b) is a bounded sequence, hence uniformly integrable. Further,
P(τa,b > k) ≤ P(−a < Sk < b) → 0 as k → ∞, hence τa,b < ∞ almost surely.
We also have that S0 = 0, so by Doob’s optional stopping theorem we know that
E(Sτa,b

) = 0. Note that using only increments ξk ∈ {−1, 1}, necessarily Sτa,b
∈

{−a, b}. Consequently,
E(Sτa,b

) = −aP(Sτa,b
= −a) + bP(Sτa,b

= b) = 0 .

Since P(Sτa,b
= −a) = 1−P(Sτa,b

= b) we have two equations with two unknowns,

which we easily solve to get that P(Sτa,b
= −a) = b

b+a is the probability that the
SRW hits −a before hitting +b. This probability is sometimes called the gambler’s
ruin, for a gambler with initial capital of +a, betting on the outcome of independent
fair games, a unit amount per game, gaining (or losing) ξk and stopping when
either all his capital is lost (ruin), or his accumulated gains reach the amount +b
(c.f. [GS01, Example 1.7.4]).

Remark. You should always take the time to verify the conditions of Doob’s
optional stopping theorem before using it. To see what might happen otherwise,
consider Example 4.3.9 without specifying a lower limit. That is, let τb = inf{n :
Sn ≥ b}. Though we shall not show it, P(τb > n) = P(maxk≤n Sk < b) → 0 as
n→ ∞. Consequently, with probability one, τb <∞ in which case clearly Sτb = b.
Hence, E(Sτb) = b 6= E(S0) = 0. This shows that you cannot apply Doob’s optional
stopping theorem here and that the sequence of random variables {Sn∧τb} is not
uniformly integrable.

There is no general recipe of how to go about finding the appropriate martingale
for each example, making this some sort of an “art” work. We illustrate this in the
context of the asymmetric simple random walk.

Example 4.3.10. Consider the stopping times τa,b for the SRW {Sn} of Example
4.3.9, now with p := P(ξk = 1) 6= 1

2 (excluding also the trivial cases of p = 0
and p = 1). We wish to compute the ruin probability r = P(Sτa,b

= −a) in this

case. Note that {Sn} is no longer a MG. However, Mn =
∏n

i=1 Yi is a MG for

Yi = eθξi provided the constant θ 6= 0 is such that E[eθξ] = 1 (see Example 4.1.14).
Further, Mn = eθSn is non-negative with Mn∧τa,b

≤ exp(|θ||Sn∧τa,b
|) bounded hence

uniformly integrable (see Example 4.3.9). Thus, applying Doob’s optional stopping
theorem to Mn at τa,b we have that

1 = E(M0) = E(Mτa,b
) = E(eθSτa,b ) = re−θa + (1− r)eθb ,

giving an explicit formula for r in terms of a, b and θ. To complete the solution
check that E[eθξ] = peθ +(1− p)e−θ = 1 for θ = log[(1− p)/p], allowing you to find
r in terms of a, b and p. Note that θ > 0 if 0 < p < 1

2 , that is, E(ξk) = 2p− 1 < 0,

while θ < 0 if 1
2 < p < 1 (i.e. E(ξk) > 0).

We could have alternatively tried to use the perhaps more natural martingale Xn =
Sn − (2p− 1)n. Once we show that τa,b has a finite expectation, it follows that so
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does supn |Xn∧τa,b
|. Thus, Xn∧τa,b

is a U.I. sequence (see Example 1.4.24), and by
Doob’s optional stopping for Xn at τa,b we have that

0 = E(X0) = E(Xτa,b
) = E[Sτa,b

− (2p− 1)τa,b] .

Hence, by linearity of the expectation, we see that (2p − 1)E(τa,b) = E(Sτa,b
) =

−ra + (1 − r)b. Having only one equation in two unknowns, r and E(τa,b), we
cannot find r directly this way.
However, having found r already using the martingale Mn, we can deduce now an
explicit formula for E(τa,b).

To practice your understanding, find another martingale that allows you to ex-
plicitly compute E(τa,b) for the symmetric (i.e. p = 1/2), SRW of Example 4.3.9.

4.3.2. Stopping times for continuous parameter filtrations. We start
with the definition of stopping times for a continuous parameter filtration {Ft} in
a probability space (Ω,F ,P), analogous to Definition 4.3.1.

Definition 4.3.11. A non-negative random variable τ(ω) is called stopping time
with respect to the continuous time filtration {Ft} if {ω : τ(ω) ≤ t} ∈ Ft for all
t ≥ 0.

Exercise 4.3.12.

(a) Show that τ is a stopping time for the right-continuous filtration {Ft} if
and only if {τ < t} ∈ Ft for all t ≥ 0.

(b) Redo Exercise 4.3.3 in case θ, τ, τ1, τ2, . . . are stopping times for a right-
continuous filtration {Ft}.

Deterministic times are clearly also stopping times (as then {ω : τ(ω) ≤ t} is
either Ω or ∅, both of which are in any σ-field). First hitting times of the type of
the next proposition are another common example of stopping times.

Proposition 4.3.13. If right-continuous S.P. {Xt} is adapted to the filtration
{Ft} then τB(ω) = inf{t ≥ 0 : Xt(ω) ∈ B} is a stopping time for Ft when either:

(a) B is an open set and Ft is a right continuous filtration;
(b) B is a closed set and the sample path t 7→ Xt(ω) is continuous for all

ω ∈ Ω.

Proof. (omit at first reading) If Ft is a right continuous filtration then by
Exercise 4.3.12 it suffices to show that At− := {ω : τB < t} ∈ Ft. By definition of
τB we have that At− is the union of the sets Γs(B) := {ω : Xs(ω) ∈ B} over all
s < t. Further, Γs(B) ∈ Ft for s ≤ t (since {Xt} is adapted to Ft). This is however
an uncountable union and indeed in general At− may not be in Ft. Nevertheless,
when u 7→ Xu is right continuous and B is an open set, it follows by elementary real
analysis that the latter union equals the countable union of Γs(B) over all rational
values of s < t. Consequently, in this case At− is in Ft, completing the proof of
part (a).
Without right continuity of Ft it is no longer enough to consider At−. Instead,
we should show that At := {ω : τB ≤ t} ∈ Ft. Unfortunately, the identity At =⋃

s≤t Γs(B) is not true in general (and havingB open is not of much help). However,

by definition of τB we have that τB(ω) ≤ t if and only if there exist non-increasing
tn(ω) ≤ t + 1/n such that Xtn(ω)(ω) ∈ B for all n. Clearly, tn ↓ s for some
s = s(ω) ≤ t. With u 7→ Xu(ω) right continuous, it follows that Xs(ω) is the limit
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as n→ ∞ of Xtn(ω)(ω) ∈ B so our assumption that B is closed leads to Xs(ω) ∈ B.
Thus, under these two assumptions we have the identity At =

⋃
s≤t Γs(B). With

B no longer an open set, the countable union of Γs(B) over Qt = {s : s = t or
s ∈ Q and s < t} is in general a strict subset of the union of Γs(B) over all s ≤ t.
Fortunately, for a closed set B and u 7→ Xu continuous we have by a real analysis
argument (which we do not provide here), that

⋃

s≤t

Γs(B) =

∞⋂

k=1

⋃

s∈Qt

Γs(Bk)

(for the open sets Bk =
⋃

y∈B(y − k−1, y + k−1)), thus concluding that At ∈ Ft

and completing the proof of part (b).

Beware that unlike discrete time, the first hitting time τB might not be a stopping
time for a Borel set B which is not closed, even when considering the canonical
filtration Gt of a process Xt with continuous sample path.

Example 4.3.14. Indeed, consider the open set B = (0,∞) and the S.P. Xt(ω) =
ωt of Example 4.2.12 of continuous sample path and canonical filtration that is not
right continuous. It is easy to check that in this case τB(1) = 0 while τB(−1) = ∞.
As the event {ω : τB(ω) ≤ 0} = {1} is not in G0 = {∅,Ω}, we see that in this case
τB is not a stopping time for Gt.

Stochastic processes are typically defined only up to a set of zero probability, and
the continuity with probability one of the sample path t 7→ Xt(ω) is not enough to
assure that τB of Proposition 4.3.13 is a stopping time for σ(Xs, s ≤ t) whenever
B is closed. This problem is easily fixed by modifying the value of such S.P. on a
set of zero probability, so as to make its sample path continuous for all ω ∈ Ω.

Exercise 4.3.15. Let Gt denote the canonical filtration of the S.P. {Xt}.
(a) Verify that Gt+ =

⋂
h>0 Gt+h is a right-continuous filtration.

(b) Considering part (a) of Proposition 4.3.13 for filtration Gt+ , deduce that

for any fixed b > 0 and δ > 0 the random variable τ
(δ)
b = inf{t ≥ δ :

Xt−δ > b} is a stopping time for {Gt}, provided that {Xt} has right-
continuous sample path.

(c) With Yt =
∫ t

0
X2

sds use part (b) of Proposition 4.3.13 to show that θ1 =
inf{t ≥ 0 : Yt = b} is another stopping time for {Gt}. Then explain why
θ2 = inf{t ≥ 0 : Y2t = b}, is in general not a stopping time for this
filtration.

We next extend to the continuous parameter setting the notion of stopped sub-
martingale (as in Theorem 4.3.6), focusing on processes with right-continuous sam-
ple path.

Theorem 4.3.16. If τ is a stopping time for the filtration {Ft} and the S.P.
{Xt} of right-continuous sample path is a subMG (or supMG or a MG) for {Ft},
then Xt∧τ = Xt∧τ(ω)(ω) is also a subMG (or supMG or MG, respectively), for this
filtration.

Equipped with Theorem 4.3.16 we extend also Doob’s optional stopping theorem
to the continuous parameter setting (compare with Theorem 4.3.8).
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Theorem 4.3.17 (Doob’s optional stopping). If (Xt,Ft) is a subMG with right-
continuous sample path and τ < ∞ a.s. is a stopping time for the filtration {Ft}
such that {Xt∧τ} is U.I. then E(Xτ ) ≥ E(X0). If in addition (Xt,Ft) is a MG,
then E(Xτ ) = E(X0).

Here are three representative applications of Doob’s optional stopping theorem in
the context of first hitting times (for the Brownian motion, the Geometric Brownian
motion and a Brownian motion with drift). When solving these and any other
exercise with first hitting times, assume that the Brownian motion Wt has been
modified on a set of zero probability so that t 7→Wt(ω) is continuous for all ω ∈ Ω.

Exercise 4.3.18. Let Wt be a Brownian motion. Fixing a > 0 and b > 0 let
τa,b = inf{t ≥ 0 : Wt /∈ (−a, b)}. We will see in Section 5.2 that τa,b is finite with
probability one.

(a) Check that τa,b is a stopping time and thatWt∧τa,b
is uniformly integrable.

(b) Applying Doob’s optional stopping theorem for this stopped martingale,
compute the probability that Wt reaches level b before it reaches level −a.

(c) Justify using the optional stopping theorem for τb,b and the martingales
Mt(λ) of Exercise 4.2.5. Deduce from it the value of E(e−θτb,b) for θ > 0.

Hint: In part (c) you may use the fact that the S.P. {−Wt} has the law as {Wt}.
Exercise 4.3.19. Consider the Geometric Brownian motion Yt = eWt . Fixing
b > 1, compute the Laplace transform E(e−θτ̄b) of the stopping time τ̄b = inf{t >
0 : Yt = b} at arbitrary θ ≥ 0 (see [KT75, page 364] for a related option pricing
application).

Exercise 4.3.20. Consider Mt = exp(λZt) for non-random constants λ and r,
where Zt =Wt + rt, t ≥ 0, and Wt is a Brownian motion.

(a) Compute the conditional expectation E(Mt+h|Gt) for Gt = σ(Zu, u ≤ t)
and t, h ≥ 0.

(b) Find the value of λ 6= 0 for which (Mt,Gt) is a martingale.
(c) Fixing a, b > 0, apply Doob’s optional stopping theorem to find the law of

Zτa,b
for τa,b = inf{t ≥ 0 : Zt /∈ (−a, b)}.

An important concept associated with each stopping time is the stopped σ-field
defined next (see also [Bre92, Definition 12.41] or [KS97, Definition 1.2.12] or
[GS01, Problem 12.4.7]).

Definition 4.3.21. The stopped σ-field Fτ associated with the stopping time τ for
a filtration {Ft} is the collection of events A ∈ F such that A∩{ω : τ(ω) ≤ t} ∈ Ft

for each t ≥ 0.

Exercise 4.3.22. Suppose θ and τ are stopping times for a filtration {Ft}.
(a) Verify that Fτ is a σ-field and that τ is Fτ -measurable.
(b) Show that if A ∈ Fθ then A ∩ {ω : θ(ω) ≤ τ(ω)} ∈ Fτ and deduce that

Fθ ⊆ Fτ when θ(ω) ≤ τ(ω) for all ω ∈ Ω.

You should interpret Fτ as quantifying the information given upon stopping at τ .
Our next example illustrates which events are in Fτ .

Example 4.3.23. For the measurable space (Ω2,F2) corresponding to two coin
tosses, consider the stopping time τ such that τ = 1 if the first coin shows H
and τ = 2 otherwise. Convince yourself that the corresponding stopped σ-field is
Fτ = σ({HT,HH}, {TH}, {TT }).
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Here is a more sophisticated example to the same effect.

Example 4.3.24. Suppose the S.P. {Xt : 0 ≤ t ≤ T } has continuous sample path,
in which case τb := inf{t ≥ 0 : Xt = b} is by Proposition 4.3.13 a stopping time with
respect to the canonical filtration Gt of {Xt}, for any non-random b ∈ R. Denote
the corresponding stopped σ-field by Gτb . Fixing non-random c ∈ R consider the
event

Ac = {ω : sup
s∈[0,T ]

Xs(ω) > c} .

Since the sample path s 7→ Xs(ω) is continuous, ω ∈ Ac if and only if Xs(ω) > c
for some s in the countable set QT of all rational numbers in [0, T ]. Consequently,
the event Ac =

⋃
s∈QT

{ω : Xs(ω) > c} is in GT . However, in general Ac 6∈ Gt for

t < T since if Xs(ω) ≤ c for all s ≤ t, then we are not sure whether ω ∈ Ac or not,
till we observe Xs(ω) also for s ∈ (t, T ]. Nevertheless, when c < b, if τb(ω) ≤ t for
some non-random t < T then clearly ω ∈ Ac. Hence, for c < b and any t < T ,

Ac

⋂
{ω : τb(ω) ≤ t} = {ω : τb(ω) ≤ t} ∈ Gt

(recall that τb is a stopping time for Gt). Since this applies for all t, we deduce in
view of Definition 4.3.21 that Ac ∈ Gτb for each c < b. In contrast, when c ≥ b,
for stochastic processes Xs of “sufficiently generic” sample path the event {τb ≤ t}
does not tell us enough about Ac to conclude that Ac ∩ {τb ≤ t} ∈ Gt for all t.
Consequently, for such stochastic processes Ac /∈ Gτb when c ≥ b.

4.4. Martingale representations and inequalities

In Subsection 4.4.1 we show that martingales are at the core of all adapted pro-
cesses. We further explore there the structure of certain sub-martingales, giving rise
to fundamental objects such as the innovation process and the increasing process
associated with square-integrable martingales. This is augmented in Subsection
4.4.2 by the study of maximal inequalities for sub-martingales (and martingales).
Such inequalities are a key technical tool in many applications of probability theory.

4.4.1. Martingale decompositions. To demonstrate the relevance of mar-
tingales to the study of many S.P., we start with a representation of any adapted,
integrable, discrete-time S.P. as the sum of a martingale and a previsible process.

Theorem 4.4.1 (Doob’s decomposition). Given an integrable S.P. {Xn}, adapted
to a discrete parameter filtration {Fn}, n ≥ 0, there exists a decomposition Xn =
Yn+An such that (Yn,Fn) is a MG and {An} is a previsible S.P. This decomposition
is unique up to the value of Y0, a R.V. measurable on F0.

Proof. Let A0 = 0 and for all n ≥ 1,

An = An−1 +E(Xn −Xn−1|Fn−1).

By definition of the conditional expectation (C.E.) we see that Ak − Ak−1 is
measurable on Fk−1 for any k ≥ 1. Since Fk−1 ⊆ Fn−1 for all k ≤ n and
An = A0 +

∑n
k=1(Ak − Ak−1), it follows that {An} is previsible for the filtra-

tion {Fn}. We next check that Yn = Xn − An is a MG. To this end, recall that
{Xn} integrable implies that so is {Xn−Xn−1} whereas the C.E. only reduces the
L1 norm (see Corollary 2.3.11). Therefore, E|An − An−1| ≤ E|Xn −Xn−1| < ∞.
So, An is integrable, as is Xn, implying (by the triangle inequality for the L1 norm)
that Yn is integrable as well. With {Xn} adapted and {An} previsible (hence
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adapted), we see that {Yn} is also adapted. It remains to check that almost surely,
E(Yn|Fn−1)− Yn−1 = 0 for all n ≥ 1. Indeed, for any n ≥ 1,

E(Yn|Fn−1)− Yn−1 = E(Xn −An|Fn−1)− (Xn−1 −An−1)

= E[Xn −Xn−1 − (An −An−1)|Fn−1] (since Yn−1 is measurable on Fn−1)

= E[Xn −Xn−1|Fn−1]− (An −An−1) (since An is previsible)

= 0 (by the definition of An).

We finish the proof by checking the stated uniqueness of the decomposition. To

this end, suppose that we have two such decompositions, Xn = Yn+An = Ỹn+ Ãn.

Then, Ỹn − Yn = An − Ãn. Since {An} and {Ãn} are previsible for the filtration
{Fn},

An − Ãn = E(An − Ãn|Fn−1) = E(Ỹn − Yn|Fn−1)

= Ỹn−1 − Yn−1 (since Ỹn and Yn are MG-s)

= An−1 − Ãn−1.

We thus conclude that An − Ãn is independent of n. If Y0 = Ỹ0 we deduce further

that An − Ãn = A0 − Ã0 = Ỹ0 − Y0 = 0 for all n. In conclusion, as soon as
we determine Y0, a R.V. measurable on F0, both sequences {An} and {Yn} are
uniquely determined.

Definition 4.4.2. When using Doob’s decomposition for the canonical filtration
σ(Xk, k ≤ n), the MG {Yn} is called the innovation process associated with {Xn}.
The reason for this name is that Xn+1 = (An+1+Yn)+(Yn+1−Yn), where An+1+Yn
is measurable on σ(Xk, k ≤ n) while Yn+1 − Yn describes the “new” part of Xn+1.
Indeed, assuming Xn ∈ L2 we have that Yn+1 − Yn is orthogonal to σ(Xk, k ≤ n)
in the sense of (2.1.2) (see Proposition 4.1.17). The innovation process is widely
used in prediction, estimation and control of time series, where the fact that it is a
MG is very handy.

As we see next, Doob’s decomposition is very attractive when (Xn,Fn) is a
subMG.

Exercise 4.4.3. Check that the previsible part of Doob’s decomposition of a sub-
martingale (Xn,Fn) is a non-decreasing sequence, that is, An ≤ An+1 for all n.
What can you say about the previsible part of Doob’s decomposition of a super-
martingale?

We next illustrate Doob’s decomposition for two classical subMGs.

Example 4.4.4. Consider the subMG {S2
n} for the random walk Sn =

∑n
k=1 ξk,

where ξk are independent and identically distributed R.V. such that Eξ1 = 0 and
Eξ21 = 1. We already saw that Yn = S2

n − n is a MG. Since Doob’s decomposition,
S2
n = Yn + An is unique, in this special case the non-decreasing previsible part of

the decomposition is An = n.

In Example 4.4.4 we have a non-random An. However, for most subMGs the
corresponding non-decreasing An is a random sequence, as is the case in our next
two examples.
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Example 4.4.5. Consider the subMG (Mn,Gn) where Mn =
∏n

i=1 Zi for i.i.d.
Zi > 0 such that EZ1 > 1 and Gn = σ(Zi : i ≤ n) (see Example 4.1.14). The
non-decreasing previsible part of its Doob’s decomposition is such that for n ≥ 1

An+1 −An = E[Mn+1 −Mn|Gn] = E[Zn+1Mn −Mn|Gn]

= MnE[Zn+1 − 1|Gn] =Mn(EZ1 − 1)

(since Zn+1 is independent of Gn). In this case An = (EZ1 − 1)
∑n−1

k=1 Mk + A1,
where we are free to choose for A1 any non-random constant. We see that An is a
random sequence (assuming the R.V. Zi are not a.s. constant).

Exercise 4.4.6. Consider the stochastic process Zt = Wt + rt, t ≥ 0, with Wt a
Brownian motion and r a non-random constant. Compute the previsible part An in
Doob’s decomposition of Xn = Z2

n, n = 0, 1, 2, . . . with respect to the discrete time
filtration Fn = σ(Zk, k = 0, . . . , n), starting at A0 = 0.

Doob’s decomposition is particularly useful in connection with square-integrable
martingales {Xn}, where one can relate the limit of Xn as n→ ∞ with that of the
non-decreasing sequence An in the decomposition of {X2

n}.
The continuous-parameter analog of Doob’s decomposition is a fundamental in-
gredient of stochastic integration. Here we provide this decomposition for a special
but very important class of subMG associated with square-integrable martingales
(see also [KS97, page 30]).

Theorem 4.4.7 (Doob-Meyer decomposition). Suppose {Ft} is a right-continuous
filtration and the martingale (Mt,Ft) of continuous sample path is such that EM2

t <
∞ for each t ≥ 0. Then, there exists a unique (integrable) S.P. {At} such that
(a). A0 = 0.
(b). {At} has continuous sample path.
(c). {At} is adapted to {Ft}.
(d). t 7→ At is non-decreasing.
(e). (M2

t −At,Ft) is a MG.

Remark. This is merely the decomposition of the subMG Xt =M2
t , where prop-

erty (a) resolves the issue of uniqueness of the R.V. A0 measurable on F0, property
(b) specifies the smoothness of the sample-path of the continuous-time S.P. {At}
and property (d) is in analogy with the monotonicity you saw already in Exercise
4.4.3.

Definition 4.4.8. The S.P. {At} in the Doob-Meyer decomposition (of {M2
t }) is

called the increasing part or the increasing process associated with the MG (Mt,Ft).

Example 4.4.9. Starting with the Brownian motion {Wt} (which a martingale),
the Doob-Meyer decomposition of W 2

t gives the increasing part At = t and the
martingale W 2

t − t (compare to Example 4.4.4 of the random walk). Indeed, recall
Exercise 4.2.4 that the increasing part is non-random for any Gaussian martingale.
Also, in Section 5.3 we show that the increasing process associated with Wt coin-
cides with its quadratic variation, as is the case for all square-integrable MGs of
continuous sample path.

Exercise 4.4.10. Find a non-random f(t) such that Xt = eWt−f(t) is a mar-
tingale, and for this value of f(t) find the increasing process associated with the
martingale Xt via the Doob-Meyer decomposition.
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Hint: Try an increasing process At =
∫ t

0
e2Ws−h(s)ds and use Fubini’s theorem to

find the non-random h(s) for which Mt = X2
t − At is a martingale with respect to

the filtration Gt = σ(Ws, s ≤ t).

Exercise 4.4.11. Suppose a stopping time τ for a right-continuous filtration {Ft}
and the increasing part At for a square-integrable martingale (Mt,Ft) of continuous
sample path are such that Aτ = 0.

(a) Applying Theorem 4.3.16 for Xt = Mt and Xt = M2
t − At deduce that

both (Mt∧τ ,Ft) and (M2
t∧τ ,Ft) are martingales.

(b) Applying (4.2.1) verify that E[(Mt∧τ −M0)
2|F0] = 0, and deduce from it

that P(Mt∧τ =M0) = 1 for any t ≥ 0.
(c) Explain why the assumed continuity of t 7→Mt implies that P(Mt∧τ =M0

for all t ≥ 0) = 1.

Remark. Taking non-random τ → ∞ we conclude from the preceding exercise
that if a a square-integrable martingale of continuous sample path has a zero in-
creasing part, then it is almost surely constant (in time).

Exercise 4.4.12. Suppose {Ft} is a right-continuous filtration and (Xt,Ft) and
(Yt,Ft) are square-integrable martingales of continuous sample path.

(a) Verify that (Xt + Yt,Ft) and (Xt − Yt,Ft) are then square-integrable
martingales of continuous sample path.

(b) Let Zt = (AX+Y
t − AX−Y

t )/4, where AX±Y
t denote the increasing part

of the MG (Xt ± Yt,Ft). Show that (XtYt − Zt,Ft) is a martingale of
continuous sample path and verify that for all 0 ≤ s < t,

E[(Xt −Xs)(Yt − Ys)|Fs] = E[(XtYt −XsYs)|Fs] = E[Zt − Zs|Fs].

Remark. The S.P. {Zt} of the preceding exercise is called the cross variation
for the martingales (Xt,Ft) and (Yt,Ft), with two such martingales considered
orthogonal if and only if their cross variation is zero (c.f. [KS97, Definition 1.5.5]).
Note that the cross variation for a martingale (Mt,Ft) and itself is merely its
quadratic variation (i.e. the associated increasing process At).

4.4.2. Maximal inequalities for martingales. Sub-martingales (and super-
martingales) are rather tame stochastic processes. In particular, as we see next,
the tail of maxXn over 1 ≤ n ≤ N , is bounded by moments of XN . This is a major
improvement over Markov’s inequality, relating the typically much smaller tail of
the R.V. XN to its moments (see Example 1.2.39).

Theorem 4.4.13 (Doob’s inequality).
(a). Suppose {Xn} is a subMG. Then, for all x > 0 and N <∞,

(4.4.1) P( max
0≤n≤N

Xn > x) ≤ x−1E|XN |.

(b). Suppose {Xn, n ≤ ∞} is a subMG (that is, E[Xm|σ(Xk, k ≤ ℓ)] ≥ Xℓ for all
0 ≤ ℓ < m ≤ ∞). Then, for all x > 0,

(4.4.2) P( sup
0≤n<∞

Xn > x) ≤ x−1E|X∞|.

(c). Suppose {Xt}, t ∈ [0, T ] is a continuous-parameter, right continuous subMG
(that is, each sample path t 7→ Xt(ω) is right continuous). Then, for all x > 0,

(4.4.3) P( sup
0≤t≤T

Xt > x) ≤ x−1E|XT |.
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Proof. (omit at first reading) Following [GS01, Theorem 12.6.1], we prove
(4.4.1) by considering the stopping time τx = min{n ≥ 0 : Xn > x}. Indeed,

xP( max
0≤n≤N

Xn > x) = xP(τx ≤ N) ≤ E(XτxI{τx≤N}) .

Since S = min(N, τx) ≤ N is a bounded stopping time, by another version of
Doob’s optional stopping (not detailed in these notes), we have that

E(XτxI{τx≤N}) +E(XNI{τx>N}) = E(Xmin(N,τx)) ≤ E(XN ) .

Noticing that,

E(XN )−E(XNI{τx>N}) = E(XNI{τx≤N}) ≤ E|XN | ,
we thus get the inequality (4.4.1).
The assumptions of part (b) result with the sequence (X0, X1, . . . , XN−1, X∞)
being also a subMG, hence by part (a) we have that for any N <∞,

P( max
0≤n≤N−1

Xn > x) ≤ x−1E|X∞|.

The events AN = {ω : maxn≤N Xn(ω) > x} monotonically increase in N to
A∞ = {ω : maxn<∞Xn(ω) > x}. Therefore, we get the inequality (4.4.2) by
the continuity of each probability measure under such an operation (see the remark
following Definition 1.1.2).
Fixing an integer N , let IN denote the (finite) set of times in [0, T ] that are given
as a ratio of two integers from {0, 1, . . . , N}. For a given continuous time subMG
Xt, t ∈ [0, T ], consider the discrete-time subMG Xtn , where tn is the n-th smallest
point in IN for n = 1, 2, . . ., and t∞ = T . Applying part (b) to this subMG we see
that

P( sup
t∈IN

Xt > x) ≤ x−1E|XT |.

With the sets IN monotonically increasing inN to the setQT of all rational numbers
in [0, T ], we may and shall change the range of t-s in the preceding supremum to
QT . Assuming that Xt has right continuous sample path,

P(AT ) := P( sup
0≤t≤T

Xt > x) = P( sup
t∈QT

Xt > x) ,

yielding the inequality (4.4.3).

Remark. Part (c) of Doob’s inequality is [KS97, Theorem 1.3.8(i), page 14].
Many other martingale inequalities exist. For example, see [KS97, Theorem 1.3.8,
parts (ii) and (iii)].

The following easy refinements of Theorem 4.4.13 are left to the reader.

Exercise 4.4.14. Considering Exercise 4.2.8 with Ψ(·) = | · | verify that when
{Xn} or {Xt} is also a MG, the inequalities (4.4.1)–(4.4.3) apply with |Xn| (or
|Xt|, respectively), in their left-hand-side, where to get (4.4.2) we further assume
that {Xn} is a U.I. MG.

Here are a few consequences of Doob’s inequality for the random walk Sn.

Example 4.4.15. Consider the random walk Sn =
n∑

i=1

ξi where the i.i.d. ξi are in-

tegrable and of zero mean. Applying Doob’s inequality (4.4.1) to the sub-martingale
|Sn| we get that P(Un > x) ≤ x−1E[|Sn|] for Un = max{|Sk| : 0 ≤ k ≤ n} and any
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x > 0. If in addition Eξ2i = 1, then applying Doob’s inequality to the sub-MG S2
n

yields the bound P(Un > x) ≤ x−2E[S2
n] = nx−2 so Un ≤ c

√
n with high probability

(for large c and all n). Next, let Zn = max{Sk : 0 ≤ k ≤ n} denote the running
maximum associated with the random walk, with Z∞ = maxk Sk the global maxi-
mum of its sample path (possibly infinite). Replacing the assumption Eξi = 0 with
E(eξi) = 1 results with the exponential martingale Mn = eSn (see Example 4.1.14).
Applying Doob’s inequality (4.4.1) to the latter, we have for each x > 0 the bound

P(Zn > x) = P( max
0≤k≤n

Sk > x) = P( max
0≤k≤n

Mk > ex) ≤ e−xE(Mn) = e−x .

This is an example of large-deviations, or exponential tail bounds. Since the events
{Zn > x} increase monotonically in n to {Z∞ > x}, we conclude that Z∞ is finite
a.s. and has exponential upper tail, that is, P(Z∞ > x) ≤ e−x for all x ≥ 0.

As we have just seen, for sub-martingales with p-finite moments, p > 1, we may
improve the rate of decay in terms of x > 0, from x−1 provided by Doob’s inequality,
to x−p. Moreover, combining it with the formula

(4.4.4) E(Zp) =

∫ ∞

0

pxp−1P(Z > x)dx

which holds for any p > 1 and any non-negative R.V. Z, allows us next to efficiently
bound the moments of the maximum of a subMG.

Theorem 4.4.16. Suppose {Xt} is a right continuous subMG for t ∈ [0, T ] such
that E[(Xt)

p
+] < ∞ for some p > 1 and all t ≥ 0. Then, for q = p/(p − 1), any

x > 0 and t ≤ T ,

(4.4.5) P( sup
0≤u≤t

Xu > x) ≤ x−pE
[
(Xt)

p
+

]
,

(4.4.6) E
[
( sup
0≤u≤t

Xu)
p
+

]
≤ qpE[(Xt)

p
+] ,

where (y)p+ denotes the function (max(y, 0))p.

Example 4.4.17. For the Brownian motion Wt we get from (4.4.5) that for any
x > 0 and p > 1,

P( sup
0≤t≤T

Wt > x) ≤ x−pE[(WT )
p
+]

and the right-hand side can be explicitly computed since WT is a Gaussian R.V. of
zero-mean and variance T . We do not pursue this further since in Section 5.2 we
explicitly compute the probability density function of sup0≤t≤T Wt.

In the next exercise you are to restate the preceding theorem for the discrete
parameter subMG Xn = |Yn|.
Exercise 4.4.18. Show that if {Yn} is a MG and E[|Yn|p] < ∞ for some p > 1
and all n ≤ N , then for q = p/(p− 1), any y > 0 and all n ≤ N ,

P(max
k≤n

|Yk| > y) ≤ y−pE
[
|Yn|p

]
,

E
[(

max
k≤n

|Yk|
)p] ≤ qpE

[
|Yn|p

]
.
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4.5. Martingale convergence theorems

The fact that the maximum of a subMG does not grow too rapidly is closely
related to convergence properties of subMG (also of supMG-s and of martingales).

The next theorem is stated in [KS97, Theorem 1.3.15 and Problem 1.3.19]. See
[GS01, Theorem 12.3.1] for the corresponding discrete-time results and their proof.

Theorem 4.5.1 (Doob’s convergence theorem). Suppose (Xt,Ft) is a right con-
tinuous subMG.
(a). If supt≥0{E[(Xt)+]} < ∞, then X∞ = limt→∞Xt exists w.p.1. Further, in
this case E|X∞| ≤ limt→∞ E|Xt| <∞.
(b). If {Xt} is uniformly integrable then Xt → X∞ also in L1. Further, the L1

convergence Xt → X∞ implies that Xt ≤ E(X∞|Ft) for any fixed t ≥ 0.

Remark. Doob’s convergence theorem is stated here for a continuous parameter
subMG (of right continuous sample path). The corresponding theorem is also easy
to state for (Xt,Ft) which is a (right continuous) supMG since then (−Xt,Ft) is a
subMG. Similarly, to any discrete parameter subMG (or supMG) corresponds the
right continuous interpolated subMG (or supMG, respectively), as done in Exam-
ple 4.2.7 (for the MG case). Consequently, Doob’s convergence theorem applies
also when replacing (Xt,Ft) by (Xn,Fn) throughout its statement (with right-
continuity then irrelevant).

Further, Doob’s convergence theorem provides the following characterization of
right continuous, Uniformly Integrable (U.I.) martingales.

Corollary 4.5.2. If (Xt,Ft) is a right continuous MG and supt E|Xt| < ∞,
then X∞ = lim

t→∞
Xt exists w.p.1. and is integrable. If {Xt} is also U.I. then Xt =

E(X∞|Ft) for all t (such a martingale, namely Xt = E(X |Ft) for an integrable
R.V. X and a filtration {Ft}, is called Doob’s martingale of X with respect to
{Ft}).

Remark. To understand the difference between parts (a) and (b) of Doob’s con-
vergence theorem, recall that if {Xt} is uniformly integrable then E[(Xt)+] ≤ C
for some C < ∞ and all t (see Definition 1.4.22). Further, by Theorem 1.4.23, the
uniform integrability together with convergence almost surely imply convergence in
L1. So, the content of part (b) is that the L1 convergence Xt → X∞ implies also
that Xt ≤ E(X∞|Ft) for any t ≥ 0.

Keep in mind that many important martingales do not converge. For example, as
we see in Section 5.2, the path of the Brownian motion Wt exceeds any level α > 0
within finite time τα. By symmetry, the same applies to any negative level −α.
Thus, almost surely, lim supt→∞Wt = ∞ and lim inft→∞Wt = −∞, that is, the
magnitude of oscillations of the Brownian sample path grows indefinitely. Indeed,
note that E[(Wt)+] =

√
t/(2π) is unbounded, so Doob’s convergence theorem does

not apply to the martingale Wt.

An important family of U.I. martingales are those with bounded second moment
(see Exercise 1.4.25). For example, the next proposition is a direct consequence of
Doob’s convergence theorem.
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Proposition 4.5.3. If the right continuous MG {Yt} is such that EY 2
t ≤ C for

some C <∞ and all t ≥ 0, then there exists a R.V. Y∞ such that Yt → Y∞ almost
surely and in L2. Moreover, EY 2

∞ ≤ C < ∞ and the corresponding result holds in
the context of discrete parameter MGs.

Proof. (omit at first reading)
Considering part (a) of Doob’s martingale convergence theorem for the non-negative
right continuous subMG Xt = Y 2

t and its a.s. limit X∞ = Y 2
∞ we deduce that

Yt
a.s.→ Y∞ for a square-integrable Y∞ such that

C ≥ lim
t→∞

EY 2
t = lim

t→∞
EXt ≥ EX∞ = EY 2

∞.

To complete the proof it suffices to show that E(|Yt−Y∞|2) → 0 as t→ ∞. To this
end, considering (4.4.6) for the non-negative right-continuous subMG Xu = |Yu|
and p = 2 we have that E(Zt) ≤ 4C for Zt = sup0≤u≤t Y

2
u and any t < ∞.

Since 0 ≤ Zt ↑ Z = sup0≤u Y
2
u , we have by monotone convergence that E(Z) ≤

4C < ∞. With Y∞ the a.s. limit of Yt, it follows that Y 2
∞ ≤ Z as well. Hence,

Vt = |Yt − Y∞|2 ≤ 2Y 2
t + 2Y 2

∞ ≤ 4Z. We see that Vt → 0 a.s. and Vt ≤ Z
with EZ < ∞, so applying the dominated convergence theorem to Vt, we get that
E(|Yt − Y∞|2) → 0 as t→ ∞, completing the proof of the proposition.

Remark. Beware that Proposition 4.5.3 does not have an L1 analog. Namely,
there exists a non-negative MG {Yn} such that EYn = 1 for all n and Yn → Y∞ = 0
almost surely, so obviously, Yn does not converge to Y∞ in L1. One such example
is given in Proposition 4.6.5.

Here are a few applications of Doob’s convergence theorem.

Exercise 4.5.4. Consider an urn that at stage 0 contains one red ball and one blue
ball. At each stage a ball is drawn at random from the urn, with all possible choices
being equally likely, and it and one more ball of the same color are then returned to
the urn. Let Rn denote the number of red balls at stage n and Mn = Rn/(n + 2)
the corresponding fraction of red balls.

(a) Find the law of Rn+1 conditional on Rn = k and use it to compute
E(Rn+1|Rn).

(b) Check that {Mn} is a martingale with respect to its canonical filtration.
(c) Applying Proposition 4.5.3 conclude that Mn → M∞ in L2 and that

E(M∞) = E(M0) = 1/2.
(d) Using Doob’s (maximal) inequality show that P(supk≥1Mk > 3/4) ≤ 2/3.

Example 4.5.5. Consider the martingale Sn =
∑n

k=1 ξk for independent, square-
integrable, zero-mean random variables ξk. Since ES2

n =
∑n

k=1 Eξ
2
k, it follows from

Proposition 4.5.3 that the random series Sn(ω) → S∞(ω) almost surely and in L2

provided
∑

k Eξ
2
k <∞.

Exercise 4.5.6. Deduce from part (a) of Doob’s convergence theorem that if {Xt}
is a non-negative right continuous martingale, then Xt

a.s.→ X∞ and EX∞ ≤ EX0 <

∞. Further, Xn
a.s.→ X∞ and EX∞ ≤ EX0 <∞ for any non-negative, discrete-time

martingale {Xn}.
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4.6. Branching processes: extinction probabilities

We use martingales to study the extinction probabilities of branching processes
(defined next). See [KT75, Chapter 8] or [GS01, Sections 5.4-5.5] for more on
these processes.

Definition 4.6.1 (Branching Process). The Branching process is a discrete time
S.P. {Zn} taking non-negative integer values, such that Z0 = 1 and for any n ≥ 1,

Zn =

Zn−1∑

j=1

N
(n)
j ,

where N and N
(n)
j for j = 1, 2, . . . are independent, identically distributed, non-

negative integer valued R.V. with finite mean m = E(N) < ∞, and where we use
the convention that if Zn−1 = 0 then also Zn = 0.

The S.P. {Zn} is interpreted as counting the size of an evolving population, with

N
(n)
j being the number of offspring of jth individual of generation (n− 1) and Zn

being the size of the n-th generation. Associated with the branching process is the

family tree with the root denoting the 0-th generation and having N
(n)
j edges from

vertex j at distance (n − 1) from the root to vertices of distance n from the root.
Random trees generated in such a fashion are called Galton-Watson trees and are
the subject of much research. We focus on the simpler S.P. {Zn} and shall use

throughout the filtration Fn = σ({N (k)
j , k ≤ n, j = 1, 2, . . .}). We note in passing

that in general Gn = σ({Zk, k ≤ n}) is a strict subset of Fn (since in general one
can not recover the number of offspring of each individual knowing only the total
population sizes at the different generations).

Proposition 4.6.2. The S.P. Xn = m−nZn is a martingale for the filtration
{Fn}.

Proof. Note that the value of Zn is a non-random function of the values of

{N (k)
j , k ≤ n, j = 1, 2, . . .}. Hence, it follows that {Zn} is adapted to the filtration

{Fn}. It suffices to show that

(4.6.1) E[Zn+1|Fn] = mZn.

Indeed, then by the tower property and induction E[Zn+1] = mE[Zn] = mn+1,
providing the integrability of {Zn}. Moreover, the identity (4.6.1) reads also as
E[Xn+1|Fn] = Xn for Xn = m−nZn, which is precisely the stated martingale

property of (Xn,Fn). To prove (4.6.1), note that the random variables N
(n+1)
j

are independent of Fn on which Zn is measurable. Hence, by the linearity of the
expectation

E[Zn+1|Fn] =

Zn∑

j=1

E[N
(n+1)
j |Fn] =

Zn∑

j=1

E(N
(n+1)
j ) = mZn,

as claimed.

While proving Proposition 4.6.2 we showed that EZn = mn for all n ≥ 0. Thus,
the mean total population size of a sub-critical branching process (i.e. m < 1) is

E(

∞∑

n=0

Zn) =

∞∑

n=0

mn =
1

1−m
<∞ .
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In particular,
∑

n Zn(ω) is then finite w.p.1. Since Zn ≥ 0 are integer valued, this
in turn implies that the extinction probability is one, namely,

pex := P({ω : Zn(ω) = 0 for all n large enough }) = 1 .

We provide next another proof of this result, using the martingale Xn = m−nZn

of Proposition 4.6.2.

Proposition 4.6.3 (sub-critical process dies off). If m < 1 then pex = 1, that is,
w.p.1. the population eventually dies off.

Proof. Recall that Xn = m−nZn is a non-negative MG. Thus, by Doob’s

martingale convergence theorem, Xn
a.s.→ X∞, where the R.V. X∞ is almost surely

finite (see Exercise 4.5.6). With Zn = mnXn and mn → 0 (for m < 1), this implies

that Zn
a.s.→ 0. Because Zn are integer valued, Zn → 0 only if Zn = 0 eventually,

completing the proof of the proposition.

As we see next, more can be done in the special case where each individual has at
most one offspring.

Exercise 4.6.4. Consider the sub-critical branching process {Zn} where indepen-
dently each individual has either one offspring (with probability 0 < p < 1) or no
offspring as all (with probability q = 1− p). Starting with Z0 = N ≥ 1 individuals,
compute the law P(T = n) of the extinction time T = min{k ≥ 1 : Zk = 0}.
We now move to critical branching processes, namely, those {Zn} for which m =
EN = 1. Excluding the trivial case in which each individual has exactly one
offspring, we show that again the population eventually dies off w.p.1.

Proposition 4.6.5 (critical process dies off). If m = 1 and P(N = 1) < 1 then
pex = 1.

Proof. As we have already seen, when m = 1 the branching process {Zn}
is a non-negative martingale. So, by Exercise 4.5.6, Zn

a.s.→ Z∞, with Z∞ finite
almost surely. Since Zn are integer valued this can happen only if for almost every
ω there exist non-negative integers k and ℓ (possibly depending on ω), such that
Zn = k for all n ≥ ℓ. Our assumption that P(N = 1) < 1 and E(N) = 1 for
the non-negative integer valued R.V. N implies that P(N = 0) > 0. Note that

given Zn = k > 0, if N
(n+1)
j = 0 for j = 1, . . . , k, then Zn+1 = 0 6= k. By the

independence of {N (n+1)
j , j = 1, . . .} and Fn deduce that for each n and k > 0,

P(Zn+1 = k|Zn = k,Fn) ≤ 1−P(Zn+1 = 0|Zn = k,Fn) = 1−P(N = 0)k := ηk < 1.

For non-random integers m > ℓ ≥ 0 and k ≥ 0 let Aℓ,m,k denote the event {Zn = k,
for n = ℓ, . . . ,m}. Note that IAℓ,m,k

= IZm=kIAℓ,m−1,k
, with Aℓ,m−1,k ∈ Fm−1

implying that Zm−1 = k. So, first “taking out what is known” (per Proposition
2.3.15), then applying the preceding inequality for n = m− 1, we deduce that for
any m > ℓ and k > 0,

E(IAℓ,m,k
|Fm−1) ≤ ηkIAℓ,m−1,k

.

Hence, by the tower property we have that P(Aℓ,m,k) ≤ ηkP(Aℓ,m−1,k). With

P(Aℓ,ℓ,k) ≤ 1, it follows that P(Aℓ,m,k) ≤ ηm−ℓ
k . We deduce that if k > 0, then

P(Aℓ,k) = 0 for Aℓ,k = Aℓ,∞,k = {Zn = k, for all n ≥ ℓ} and any ℓ ≥ 0. We have
seen that P(∪ℓ,k≥0 Aℓ,k) = 1 while P(Aℓ,k) = 0 whenever k > 0. So, necessarily
P(∪ℓAℓ,0) = 1, which amounts to pex = 1.
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Remark. Proposition 4.6.5 shows that in case m = 1, the martingale {Zn} con-
verges to 0 w.p.1. If this sequence was U.I. then by part (b) of Doob’s convergence
theorem, necessarily Zn → 0 also in L1, i.e. EZn → 0. However, EZn = 1 for all n,
so we conclude that the sequence {Zn} is not uniformly integrable. Further, note
that either Zn = 0 or Zn ≥ 1, so 1 = E(ZnIZn≥1) = E(Zn|Zn ≥ 1)P(Zn ≥ 1).
With pex = 1, the probability P(Zn ≥ 1) of survival for n generations decays to
zero as n → ∞ and consequently, conditional upon survival, the mean population
size E(Zn|Zn ≥ 1) = 1/P(Zn ≥ 1) grows to infinity as n→ ∞.

The martingale of Proposition 4.6.2 does not provide information on the value of
pex for a super-critical branching process, that is, when m > 1. However, as we see
next, when N is also square-integrable, it implies that m−nZn converges in law to
a non-zero random variable.

Exercise 4.6.6. Let Zn be the population size for the n-th generation of a (super-
critical) branching process, with the number of offspring having mean m = E(N) >
1 and finite variance σ2 = Var(N) <∞.

(a) Check that E(Z2
n+1) = m2E(Z2

n) + σ2E(Zn).
(b) Compute E(X2

n) for Xn = m−nZn.
(c) Show that Xn converges in law to some R.V. X∞ with P(X∞ > 0) > 0

Hint: Use Proposition 4.5.3.

For a super-critical branching process, if P(N = 0) = 0 extinction is of course
impossible. Otherwise, pex ≥ P(Z1 = 0) = P(N = 0) > 0. Nevertheless, even in
this case pex < 1 for any super-critical branching process. That is, with positive
probability the population survives forever. Turning to compute pex, consider the
function

(4.6.2) ϕ(p) = P(N = 0) +

∞∑

k=1

P(N = k)pk .

Note that the convex continuous function ϕ(p) is such that ϕ(0) = P(N = 0) > 0,
ϕ(1) = 1 and ϕ′(1) = EN > 1. It is not hard to verify that for any such function
there exists a unique solution ρ ∈ (0, 1) of the equation p = ϕ(p). Upon verifying
that ρZn is then a martingale, you are to show next that pex = ρ (for a different
derivation without martingales, see [GS01, Section 5.4] or [KT75, Section 8.3]).

Exercise 4.6.7. Consider a super-critical branching process {Zn} with Z0 = 1,
P(N = 0) > 0 and let ρ denote the unique solution of p = ϕ(p) in (0, 1).

(a) Fixing p ∈ (0, 1) check that E(pZn+1 |Fn) = ϕ(p)Zn and verify that thus
Mn = ρZn is a uniformly bounded martingale with respect to the filtration
Fn.

(b) Use Doob’s convergence theorem to show that Mn → M∞ almost surely
and in L1 with E(M∞) = ρ.

(c) Check that since Zn are non-negative integers, the random variable M∞
can only take the values ρk for k = 0, 1, . . . or the value 0 that corresponds
to Zn(ω) → ∞.

(d) Adapting the proof of Proposition 4.6.5 show that actually M∞(ω) ∈
{0, 1} with probability one.

(e) Noting the M∞ = 1 if and only if the branching process is eventually
extinct, conclude that pex = ρ.
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Exercise 4.6.8. Suppose {Zn} is a branching process with P(N = 1) < 1 and
Z0 = 1. Show that

P( lim
n→∞

Zn = ∞) = 1− pex ,

first in case m ≤ 1, then in case P(N = 0) = 0 and finally using the preceding
exercise, for m > 1 and P(N = 0) > 0.

Exercise 4.6.9. Let {Zn} be a branching process with Z0 = 1. Compute pex in
each of the following situations and specify for which values of the various param-
eters extinction happens with probability one.

(a) The offspring distribution satisfies, for some 0 < p < 1,

P(N = 0) = p , P(N = 2) = 1− p.

(b) The offspring distribution is (shifted) Geometric, i.e. for some 0 < p < 1,

P(N = k) = p(1− p)k , k = 0, 1, 2, . . .





CHAPTER 5

The Brownian motion

The Brownian motion is the most fundamental continuous time stochastic process.
It is both a martingale of the type considered in Section 4.2 and a Gaussian process
as considered in Section 3.2. It also has continuous sample path, independent incre-
ments, and the strong Markov property of Section 6.1. Having all these beautiful
properties allows for a rich mathematical theory. For example, many probabilis-
tic computations involving the Brownian motion can be made explicit by solving
partial differential equations. Further, the Brownian motion is the corner stone of
diffusion theory and of stochastic integration. As such it is the most fundamental
object in applications to and modeling of natural and man-made phenomena.
In this chapter we define and construct the Brownian motion (in Section 5.1), then
deal with a few of the many interesting properties it has. Specifically, in Section
5.2 we use stopping time and martingale theory to study the hitting times and the
running maxima of this process, whereas in Section 5.3 we consider the smoothness
and variation of its sample path.

5.1. Brownian motion: definition and construction

Our starting point is an axiomatic definition of the Brownian motion via its Gauss-
ian property.

Definition 5.1.1. A stochastic process (Wt, 0 ≤ t ≤ T ) is called a Brownian
motion (or a Wiener Process) if:
(a) Wt is a Gaussian process
(b) E(Wt) = 0, E(WtWs) = min(t, s)
(c) For almost every ω, the sample path, t 7→Wt(ω) is continuous on [0, T ].

Note that (a) and (b) of Definition 5.1.1 completely characterize the finite dimen-
sional distributions of the Brownian motion (recall Corollary 3.2.18 that Gaussian
processes are characterized by their mean and auto-covariance functions). Adding
property (c) to Definition 5.1.1 allows us to characterize its sample path as well.
We shall further study the Brownian sample path in Sections 5.2 and 5.3. We next

establish the independence of the zero-mean Brownian increments, implying that
the Brownian motion is an example of the martingale processes of Section 4.2 (see
Proposition 4.2.3). Note however that the Brownian motion is a non-stationary
process (see Proposition 3.2.25), though it does have stationary increments.

Proposition 5.1.2. The Brownian motion has independent increments of zero-
mean.

Proof. From part (b) of Definition 5.1.1, we obtain that for t ≥ s and h > 0,

Cov(Wt+h−Wt,Ws) = E[(Wt+h−Wt)Ws] = E(Wt+hWs)−E(WtWs) = s−s = 0 .

95
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Figure 1. Three sample paths of Brownian motion. The den-
sity curves illustrate that the random variable W1 has a N(0, 1)
distribution, while W2 has a N(0, 2) distribution.

Thus, Wt+h −Wt and Ws are uncorrelated for any fixed h > 0 and s ≤ t. Fixing
n < ∞ and 0 ≤ s1 < s2 < . . . < sn ≤ t, since {Wt} is a Gaussian process, we
know that (Wt+h,Wt,Ws1 , . . . ,Wsn) is a Gaussian random vector, and hence so
is X = (Wt+h −Wt,Ws1 , . . . ,Wsn) (recall Proposition 3.2.16). The vector X has
mean µ = 0 and covariance matrix Σ such that Σ0k = E(Wt+h −Wt)Wsk = 0 for
k = 1, . . . , n. In view of Definition 3.2.8 this results with the characteristic function
ΦX(θ) being the product of the characteristic function of Wt+h −Wt and that of
(Ws1 , . . . ,Wsn). Consequently, Wt+h −Wt is independent of (Ws1 , . . . ,Wsn) (see
Proposition 3.2.6). Since this applies for any 0 ≤ s1 < s2 < . . . < sn ≤ t, it can be
shown that Wt+h −Wt is also independent of σ(Ws, s ≤ t).
In conclusion, the Brownian motion is an example of a zero mean S.P. with in-
dependent increments. That is, (Wt+h −Wt) is independent of {Ws, s ∈ [0, t]}, as
stated.

We proceed to construct the Brownian motion as in [Bre92, Section 12.7]. To
this end, consider

L2([0, T ]) = {f(u) :
∫ T

0

f2(u)du <∞} ,

equipped with the inner product, (f, g) =
∫ T

0
f(u)g(u)du, where we identify f, g

such that f(t) = g(t) for almost every t ∈ [0, T ], as being the same function. As
we have seen in Example 2.2.21, this is a separable Hilbert space, and there exists
a non-random sequence of functions, {φi(t)}∞i=1 in L2([0, T ]), such that for any
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f, g ∈ L2([0, T ]),

(5.1.1) lim
n→∞

n∑

i=1

(f, φi)(g, φi) = (f, g)

(c.f. Definition 2.2.17 and Theorem 2.2.20). Let Xi be i.i.d., Gaussian R.V.-s with
EXi = 0 and EX2

i = 1, all of which are defined on the same probability space
(Ω,F ,P). For each positive integer N define the stochastic process

V N
t =

N∑

i=1

Xi

∫ t

0

φi(u)du .

Since φi(t) are non-random and any linear combination of the coordinates of a
Gaussian random vector gives a Gaussian random vector (see Proposition 3.2.16),
we see that V N

t is a Gaussian process.
We shall show that the random variables V N

t converge in L2(Ω,F ,P) to some
random variable Vt, for any fixed, non-random, t ∈ [0, T ]. Moreover, we show
that the S.P. Vt has properties (a) and (b) of Definition 5.1.1. Then, applying
Kolmogorov’s continuity theorem, we deduce that the continuous modification of
the S.P. Vt is the Brownian motion.
Our next result provides the first part of this program.

Proposition 5.1.3. Fixing t ∈ [0, T ], the sequence N 7→ V N
t is a Cauchy sequence

in the Hilbert space L2(Ω,F ,P). Consequently, there exists a S.P. Vt(ω) such that
E[(Vt − V N

t )2] → 0 as N → ∞, for any t ∈ [0, T ]. The S.P. Vt is Gaussian with
E(Vt) = 0 and E(VtVs) = min(t, s).

Proof. Fix t ∈ [0, T ], noting that for any i,

(5.1.2)

∫ t

0

φi(u)du =

∫ T

0

1[0,t](u)φi(u)du = (1[0,t], φi) .

Set V 0
t = 0 and let

ψn(t) =

∞∑

i=n+1

(1[0,t], φi)
2 .

Since E(XiXj) = 1i=j we have for any N > M ≥ 0,

E
[
(V N

t − VM
t )2

]
=

N∑

i=M+1

N∑

j=M+1

E[XiXj ](

∫ t

0

φi(u)du)(

∫ t

0

φj(u)du)

=

N∑

i=M+1

(

∫ t

0

φi(u)du)
2 = ψM (t)− ψN (t)(5.1.3)

(using (5.1.2) for the rightmost equality). Applying (5.1.1) for f = g = 1[0,t](·) we
have that for all M ,

ψM (t) ≤ ψ0(t) =

∞∑

i=1

(1[0,t], φi)
2 = (1[0,t],1[0,t]) = t <∞.

In particular, taking M = 0 in (5.1.3) we see that E[(V N
t )2] are finite for all

N . It further follows from the finiteness of the infinite series ψ0(t) that ψn(t) →
0 as n → ∞. In view of (5.1.3) we deduce that V N

t is a Cauchy sequence in
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L2(Ω,F ,P), converging to some random variable Vt by the completeness of this
space (see Proposition 1.3.20).
Being the pointwise (in t) limit in 2-mean of Gaussian processes, the S.P. Vt
is also Gaussian, with the mean and auto-covariance functions for Vt being the
(pointwise in t) limits of those for V N

t (c.f. Proposition 3.2.20). Recall that

E(V N
t ) =

N∑
i=1

EXi

t∫
0

φi(u)du = 0, for all N , hence E(Vt) = 0 as well.

Repeating the argument used when deriving (5.1.3) we see that for any s, t ∈ [0, T ],

E(V N
t V N

s ) =

N∑

i=1

N∑

j=1

E[XiXj ](

∫ t

0

φi(u)du)(

∫ s

0

φj(u)du) =

N∑

i=1

(1[0,t], φi)(1[0,s], φi) .

Applying (5.1.1) for f = 1[0,t](·) and g = 1[0,s](·), both in L2([0, T ]), we now have
that

E(VtVs) = lim
N→∞

E(V N
t V N

s ) = lim
N→∞

N∑

i=1

(1[0,t], φi)(1[0,s], φi)

= (1[0,t],1[0,s]) = min(t, s) ,

as needed to conclude the proof of the proposition.

Having constructed a Gaussian stochastic process Vt with the same distribution
as a Brownian motion, we next apply Kolmogorov’s continuity theorem, so as to
obtain its continuous modification. This modification is then a Brownian motion.
To this end, recall that a Gaussian R.V. Y with EY = 0,EY 2 = σ2 has moments

E(Y 2n) = (2n)!
2nn! σ

2n. In particular, E(Y 4) = 3(E(Y 2))2. Since Vt is Gaussian with

E[(Vt+h − Vt)
2] = E[(Vt+h − Vt)Vt+h]−E[(Vt+h − Vt)Vt] = h ,

for all t and h > 0, we get that

E[(Vt+h − Vt)
4] = 3[E(Vt+h − Vt)

2]2 = 3h2,

as needed to apply Kolmogorov’s theorem (with α = 4, β = 1 and c = 3 there).

Remark. There is an alternative direct construction of the Brownian motion
as the limit of time-space rescaled random walks (see Theorem 3.1.3 for details).
Further, though we constructed the Brownian motion Wt as a stochastic process
on [0, T ] for some finite T < ∞, it easily extends to a process on [0,∞), which we
thus take hereafter as the index set of the Brownian motion.

The Brownian motion has many interesting scaling properties, some of which are
summarized in your next two exercises.

Exercise 5.1.4. Suppose Wt is a Brownian motion and α, s, T > 0 are non-
random constants. Show the following.

(a) (Symmetry) {−Wt, t ≥ 0} is a Brownian motion.
(b) (Time homogeneity) {Ws+t −Ws, t ≥ 0} is a Brownian motion.
(c) (Time reversal) {WT −WT−t, 0 ≤ t ≤ T } is a Brownian motion.
(d) (Scaling, or self-similarity) {√αWt/α, t ≥ 0} is a Brownian motion.

(e) (Time inversion) If W̃0 = 0 and W̃t = tW1/t, then {W̃t, t ≥ 0} is a
Brownian motion.
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(f) With W i
t denoting independent Brownian motions find the constants cn

such that cn
∑n

i=1W
i
t are also Brownian motions.

Exercise 5.1.5. Fix ρ ∈ [−1, 1]. Let W̃t = ρW 1
t +

√
1− ρ2W 2

t where W 1
t and

W 2
t are two independent Brownian motions. Show that W̃t is a Brownian motion

and find the value of E(W 1
t W̃t).

Exercise 5.1.6. Fixing s > 0 show that the S.P. {Ws −Ws−t, 0 ≤ t ≤ s} and
{Ws+t − Ws, t ≥ 0} are two independent Brownian motions and for 0 < t ≤ s
evaluate qt = P(Ws > Ws−t > Ws+t).

Applying Doob’s inequality you are to prove next the law of large numbers for
Brownian motion, namely, that almost surely t−1Wt → 0 for t→ ∞ (compare with
the more familiar law of large numbers, n−1[Sn−ESn] → 0 for a random walk Sn).

Exercise 5.1.7. Let Wt be a Brownian motion.

(a) Use the inequality (4.4.6) to show that for any 0 < u < v,

E
[
( sup
u≤t≤v

|Wt|/t)2
]
≤ 4v

u2
.

(b) Taking u = 2n and v = 2n+1, n ≥ 1 in part (a), apply Markov’s inequality
to deduce that for any ǫ > 0,

P
(

sup
2n≤t≤2n+1

|Wt|/t > ǫ
)
≤ 8ǫ−22−n.

(c) Applying Borel-Cantelli lemma I conclude that almost surely t−1Wt → 0
for t→ ∞.

Many important S.P. are derived from the Brownian motion Wt. Our next two
exercises introduce a few of these processes, the Brownian bridge Bt = Wt −
min(t, 1)W1, theGeometric Brownian motion Yt = eWt , and the Ornstein-Uhlenbeck
process Ut = e−t/2Wet . We also define Xt = x+µt+σWt, a Brownian motion with
drift µ ∈ R and diffusion coefficient σ > 0 starting from x ∈ R. (See Figure 2 for
illustrations of sample paths associated with these processes.)

Exercise 5.1.8. Compute the mean and the auto-covariance functions of the pro-
cesses Bt, Yt, Ut, and Xt. Justify your answers to:

(a) Which of the processes Wt, Bt, Yt, Ut, Xt is Gaussian?
(b) Which of these processes is stationary?
(c) Which of these processes has continuous sample path?
(d) Which of these processes is adapted to the filtration σ(Ws, s ≤ t) and

which is also a sub-martingale for this filtration?

Exercise 5.1.9. Show that for 0 ≤ t ≤ 1 each of the following S.P. has the
same distribution as the Brownian bridge and explain why both have continuous
modifications.

(a) B̂t = (1− t)Wt/(1−t) for t < 1 with B̂1 = 0.
(b) Zt = tW1/t−1 for t > 0 with Z0 = 0.

Exercise 5.1.10. Let Xt =
∫ t

0
Wsds for a Brownian motion Wt.

(a) Verify that Xt is a well defined stochastic process. That is, check that
ω 7→ Xt(ω) is a random variable for each fixed t ≥ 0.
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Figure 2. Illustration of sample paths for processes in Exercise 5.1.8.

(b) Using Fubini’s theorem 3.3.10 find E(Xt) and E(X2
t ).

(c) Is Xt a Gaussian process? Does it have continuous sample paths a.s.?
Does it have stationary increments? Independent increments?

Exercise 5.1.11. Suppose Wt is a Brownian motion.

(a) Compute the probability density function of the random vector (Ws,Wt)
for positive t 6= s. Then compute E(Ws|Wt) and Var(Ws|Wt), first for
s > t, then for s < t.
Hint: Consider Example 2.4.5.

(b) Explain why the Brownian Bridge {Bt, 0 ≤ t ≤ 1} has the same distribu-
tion as {Wt, 0 ≤ t ≤ 1, conditioned upon W1 = 0} (which is the reason
for naming Bt a Brownian bridge).
Hint: Both Exercise 2.4.6 and parts of Exercise 5.1.8 may help here.

We conclude with the fractional Brownian motion, another Gaussian S.P. of con-
siderable interest in financial mathematics and analysis of computer network traffic.

Exercise 5.1.12. Fix H ∈ (0, 1). A Gaussian stochastic process {Xt, t ≥ 0}, is
called a fractional Brownian motion (or in short, fBM), of Hurst parameter H if
E(Xt) = 0 and

E(XtXs) =
1

2
[|t|2H + |s|2H − |t− s|2H ] , s, t ≥ 0.

(a) Show that an fBM of Hurst parameter H has a continuous modification
that is also locally Hölder continuous with exponent γ for any 0 < γ < H.

(b) Verify that in case H = 1/2 such modification yields the (standard) Brow-
nian motion.

(c) Show the self-similarity property, whereby for any non-random α > 0 the
process {αHXt/α} is an fBM of the same Hurst parameter H.
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(d) For which values of H is the fBM a process of stationary increments and
for which values of H is it a process of independent increments?

5.2. The reflection principle and Brownian hitting times

We start with Paul Lévy’s martingale characterization of the Brownian motion,
stated next.

Theorem 5.2.1 (Lévy’s martingale characterization). Suppose square-integrable
MG (Xt,Ft) of right-continuous filtration and continuous sample path is such that
(X2

t − t,Ft) is also a MG. Then, Xt is a Brownian motion.

Remark. The continuity of Xt is essential for Lévy’s martingale characteriza-
tion. For example, the square-integrable martingale Xt = Nt − t, with Nt the
Poisson process of rate one (per Definition 6.2.1), is such that X2

t − t is also a MG
(see Exercise 6.2.2). Of course, almost all sample path of the Poisson process are
discontinuous.

A consequence of this characterization is that a square-integrable MG with contin-
uous sample path and unbounded increasing part is merely a time changed Brownian
motion (c.f. [KS97, Theorem 3.4.6]).

Proposition 5.2.2. Suppose (Xt,Ft) is a square-integrable martingale with X0 =
0, right-continuous filtration and continuous sample path. If the increasing part At

in the corresponding Doob-Meyer decomposition of Theorem 4.4.7 is almost surely
unbounded then Ws = Xτs is a Brownian motion, where τs = inf{t ≥ 0 : At > s}
are Ft-stopping times such that s 7→ τs is non-decreasing and right-continuous
mapping of [0,∞) to [0,∞), with Aτs = s and Xt =WAt .

Our next proposition may be viewed as yet another application of Lévy’s mar-
tingale characterization. In essence it states that each stopping time acts as a
regeneration point for the Brownian motion. In particular, it implies that the
Brownian motion is a strong Markov process (in the sense of Definition 6.1.21). As
we soon see, this “regeneration” property is very handy for finding the distribution
of certain Brownian hitting times and running maxima.

Proposition 5.2.3. If τ is a stopping time for the canonical filtration Gt of the
Brownian motion Wt then the S.P. Xt = Wt+τ −Wτ is also a Brownian motion,
which is independent of the stopped σ-field Gτ .

Remark. This result is stated as [Bre92, Theorem 12.42], with a proof that
starts with a stopping time τ taking a countable set of values and moves to the
general case by approximation, using sample path continuity. Alternatively, with
the help of some amount of stochastic calculus one may verify the conditions of
Lévy’s theorem for Xt and the filtration Ft = σ(Ws+τ −Wτ , 0 ≤ s ≤ t). We will
detail neither approach here.

We next apply Proposition 5.2.3 for computing the probability density function
of the first hitting time τα = inf{t > 0 : Wt = α} for any fixed α > 0. Since the
Brownian motion has continuous sample path, we know that τα = min{t > 0 :
Wt = α} and that the maximal value of Wt for t ∈ [0, T ] is always achieved at some
t ≤ T . Further, since W0 = 0 < α, if Ws ≥ α for some s > 0, then Wu = α for
some u ∈ [0, s], that is, τα ≤ s with Wτα = α. Consequently,

{ω :WT (ω) ≥ α} ⊆ {ω : max
0≤s≤T

Ws(ω) ≥ α} = {ω : τα(ω) ≤ T } .
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Figure 3. Illustration of the reflection principle for Brownian motion.

Recall that Xt =Wt+τα −Wτα is a Brownian motion, independent of the random
variable τα (which is measurable on Gτα). In particular, the law of Xt is invariant to
a sign-change, so we have the reflection principle for the Brownian motion, stating
that

P( max
0≤s≤T

Ws ≥ α, WT ≥ α) = P(τα ≤ T,XT−τα ≥ 0)

= P(τα ≤ T,XT−τα ≤ 0) = P( max
0≤s≤T

Ws ≥ α, WT ≤ α) .

Also, P(WT = α) = 0 and we have that

P( max
0≤s≤T

Ws ≥ α) = P( max
0≤s≤T

Ws ≥ α,WT ≥ α) +P( max
0≤s≤T

Ws ≥ α,WT ≤ α)

= 2P( max
0≤s≤T

Ws ≥ α,WT ≥ α) = 2P(WT ≥ α)(5.2.1)

= 2

∫ ∞

αT−1/2

e
−x2

2
dx√
2π

Among other things, this shows that P(τα > T ) → 0 as T → ∞, hence τα < ∞
with probability one. Further, we have that the probability density function of τα
at T is given by

(5.2.2) pτα(T ) =
∂[P(τα ≤ T )]

∂T
= 2

∂

∂T

∫ ∞

αT−1/2

e
−x2

2
dx√
2π

=
α√

2πT 3/2
e−

α2

2T .

This computation demonstrates the power of the reflection principle and more
generally, that many computations for stochastic processes are the most explicit
when they are done for the Brownian motion.
Our next exercise provides yet another example of a similar nature.

Exercise 5.2.4. Let Wt be a Brownian motion.

(a) Show that −min0≤t≤T Wt and max0≤t≤T Wt have the same distribution
which is also the distribution of |WT |.

(b) Show that the probability α that the Brownian motion Wu attains the
value zero at some u ∈ (s, s + t) is given by α =

∫∞
−∞ pt(|x|)φs(x)dx,

where pt(x) = P(|Wt| ≥ x) for x, t > 0 and φs(x) denotes the probability
density of the R.V. Ws.
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Remark: The explicit formula α = (2/π) arccos(
√
s/(s+ t)) is obtained

in [KT75, page 348] by computing this integral.

Remark. Using a reflection principle type argument one gets the discrete time
analog of (5.2.1), whereby the simple random walk Sn of Definition 3.1.2 satisfies
for each integer r > 0 the identity

P( max
0≤k≤n

Sk ≥ r) = 2P(Sn > r) +P(Sn = r) .

Fixing α > 0 and β > 0 consider the stopping time τβ,α = inf{t : Wt ≥ α or
Wt ≤ −β} (for the canonical filtration of the Brownian motion Wt). By continuity
of the Brownian sample path we know that Wτβ,α

∈ {α,−β}. Applying Doob’s
optional stopping theorem for the uniformly integrable stopped martingaleWt∧τβ,α

of continuous sample path we get that P(Wτβ,α
= α) = β/(α+β) (for more details

see Exercise 4.3.18).

Exercise 5.2.5. Show that E(τβ,α) = αβ by applying Doob’s optional stopping
theorem for the uniformly integrable stopped martingale W 2

t∧τβ,α
− t ∧ τβ,α.

We see that the expected time it takes the Brownian motion to exit the interval
(−β, α) is finite for any finite α and β. As β ↑ ∞, these exit times τβ,α converge
monotonically to the time of reaching level α, namely τα = inf{t > 0 : Wt = α}.
Exercise 5.2.5 implies that τα has infinite expected value (we can see this also
directly from the formula (5.2.2) for its probability density function).

To summarize, the Brownian motion eventually reach any level, the expected time
it takes for doing so is infinite, while the exit time of any finite interval has finite
mean (and moreover, all its moments are finite).

Building on Exercises 4.2.9 and 5.2.5 here is an interesting fact about the planar
Brownian motion.

Exercise 5.2.6. The planar Brownian motion is an R2-valued stochastic process
W t = (Xt, Yt) consisting of two independent Brownian motions {Xt} and {Yt}. Let
Rt =

√
X2

t + Y 2
t denote its distance from the origin and θr = inf{t : Rt ≥ r} the

corresponding first hitting time for a sphere of radius r > 0 around the origin.

(a) Show that Mt = R2
t − 2t is a martingale for Ft = σ(Xs, Ys, s ≤ t).

Hint: Consider Proposition 2.3.17.
(b) Check that θr ≤ τr,r = inf{t : |Xt| ≥ r} and that θr is a stopping time

for the filtration Ft.
(c) Verify that {Mt∧θr} is uniformly integrable and deduce from Doob’s op-

tional stopping theorem that E[θr] = r2/2.

5.3. Smoothness and variation of the Brownian sample path

We start with a definition of the q-th variation of a function f(t) on a finite interval
t ∈ [a, b], a < b of the real line, where q ≥ 1. We shall study here only the total
variation, corresponding to q = 1 and the quadratic variation, corresponding to
q = 2.

Definition 5.3.1. For any finite partition π of [a, b], that is, π = {a = t
(π)
0 <

t
(π)
1 < . . . < t

(π)
k = b}, let ‖π‖ = maxi{t(π)i+1 − t

(π)
i } denote the length of the longest
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interval in π and

V
(q)
(π) (f) =

∑

i

|f(t(π)i+1)− f(t
(π)
i )|q

denote the q-th variation of f(·) on π. The q-th variation of f(·) on [a, b] is then

(5.3.1) V (q)(f) = lim
‖π‖→0

V
(q)
(π) (f) ,

provided such limit exists.

We next extend this definition to continuous time stochastic processes.

Definition 5.3.2. The q-th variation of a S.P. Xt on the interval [a, b] is the ran-
dom variable V (q)(X) obtained when replacing f(t) by Xt(ω) in the above definition,
provided the limit (5.3.1) exists (in some sense).

The quadratic variation is affected by the smoothness of the sample path. For
example, suppose that a S.P. X(t) has Lipschitz sample path with probability one.
Namely, there exists a random variable L(ω) which is finite almost surely, such that
|X(t)−X(s)| ≤ L|t− s| for all t, s ∈ [a, b]. Then,

V
(2)
(π) (X) ≤ L2

∑

i

(t
(π)
i+1 − t

(π)
i )2

≤ L2‖π‖
∑

i

(t
(π)
i+1 − t

(π)
i ) = L2‖π‖(b− a) ,(5.3.2)

converges to zero almost surely as ‖π‖ → 0. So, such a S.P. has zero quadratic
variation on [a, b].

By considering different time intervals we view the quadratic variation as yet
another stochastic process.

Definition 5.3.3. The quadratic variation of a stochastic process X, denoted

V
(2)
t (X) is the non-decreasing, non-negative S.P. corresponding to the quadratic

variation of X on the intervals [0, t].

Focusing hereafter on the Brownian motion, we have that,

Proposition 5.3.4. For a Brownian motion W (t), as ‖π‖ → 0 we have that

V
(2)
(π) (W ) → (b − a) in 2-mean.

Proof. Fixing a finite partition π, note that

E[V
(2)
(π) (W )] =

∑

i

E[(W (ti+1)−W (ti))
2]

=
∑

i

Var(W (ti+1)−W (ti)) =
∑

i

(ti+1 − ti) = b− a .

Similarly, by the independence of increments,

E[V
(2)
(π) (W )2] =

∑

i,j

E[(W (ti+1)−W (ti))
2 (W (tj+1)−W (tj))

2]

=
∑

i

E[(W (ti+1)−W (ti))
4]

+
∑

i6=j

E[(W (ti+1)−W (ti))
2]E[(W (tj+1)−W (tj))

2]
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Since W (tj+1)−W (tj) is Gaussian of mean zero and variance (tj+1 − tj), it follows
that

E[V
(2)
(π) (W )2] = 3

∑

i

(ti+1−ti)2+
∑

i6=j

(ti+1−ti)(tj+1−tj) = 2
∑

i

(ti+1−ti)2+(b−a)2 .

So, Var(V
(2)
(π) (W )) = E(V

(2)
(π) (W )2)− (b− a)2 ≤ 2‖π‖(b− a) → 0 as ‖π‖ → 0. With

the mean of V
(2)
(π) (W ) being (b− a) and its variance converging to zero, we have the

stated convergence in 2-mean.

Here are two consequences of Proposition 5.3.4.

Corollary 5.3.5. The quadratic variation of the Brownian motion is the S.P.

V
(2)
t (W ) = t, which is the same as the increasing process in the Doob-Meyer de-

composition of W 2
t . More generally, the quadratic variation equals the increasing

process for any square-integrable martingale of continuous sample path and right-
continuous filtration (as shown for example in [KS97, Theorem 1.5.8, page 32]).

Remark. Since V
(2)
(π) are observable on the sample path, considering finer and

finer partitions πn, one may numerically estimate the quadratic variation for a
given sample path of a S.P. The quadratic variation of the Brownian motion is non-
random, so if this numerical estimate significantly deviates from t, we conclude that
Brownian motion is not a good model for the given S.P.

Corollary 5.3.6. With probability one, the sample path of the Brownian motion
W (t) is not Lipschitz continuous in any interval [a, b], a < b.

Proof. Fix a finite interval [a, b], a < b and let ΓL denote the set of outcomes
ω for which |W (t) −W (s)| ≤ L|t− s| for all t, s ∈ [a, b]. From (5.3.2) we see that
if ‖π‖ ≤ 1/(2L2) then

Var(V
(2)
(π) (W )) ≥ E[(V

(2)
(π) (W )− (b− a))2IΓL ] ≥

(b − a)2

4
P(ΓL) .

By Proposition 5.3.4 we know that Var(V
(2)
(π) (W )) → 0 as ‖π‖ → 0, hence necessarily

P(ΓL) = 0. As the set Γ of outcomes for which the sample path ofW (t) is Lipschitz
continuous is just the (countable) union of ΓL over positive integer values of L, it
follows that P(Γ) = 0, as stated.

We can even improve upon this negative result as following.

Exercise 5.3.7. Fixing γ > 1
2 check that by the same type of argument as above,

with probability one, the sample path of the Brownian motion is not globally Hölder
continuous of exponent γ in any interval [a, b], a < b.
In contrast, applying Theorem 3.3.3 verify that with probability one the sample
path of the Brownian motion is locally Hölder continuous for any exponent γ < 1/2
(see part (c) of Exercise 3.3.5 for a similar derivation).

The next exercise shows that one can strengthen the convergence of the quadratic
variation for W (t) by imposing some restrictions on the allowed partitions.

Exercise 5.3.8. Let V
(2)
(π) (W ) denote the approximation of the quadratic variation

of the Brownian motion for a finite partition π of [a, a + t]. Combining Markov’s
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inequality (for f(x) = x2) and Borel-Cantelli I show that for the Brownian motion

V
(2)
(πn)

(W )
a.s.−→ t if the finite partitions πn are such that

∑
n ‖πn‖ <∞.

In the next exercise, you are to follow a similar procedure, en-route to finding the
quadratic variation for a Brownian motion with drift.

Exercise 5.3.9. Let Z(t) = W (t) + rt, t ≥ 0, where W (t) is a Brownian motion
and r a non-random constant.

(a) What is the law of Y = Z(t+ h)− Z(t)?
(b) For which values of t′ < t and h, h′ > 0 are the variables Y and Y ′ =

Z(t′ + h′)− Z(t′) independent?

(c) Find the quadratic variation V
(2)
t (Z) of the stochastic process {Z(t)}.

Hint: See Exercise 5.3.15.

Typically, the stochastic integral It =
∫ t

0
XsdWs is first constructed in case Xt

is a “simple” process (that is having sample path that are piecewise constant on
non-random intervals), exactly as you do next.

Exercise 5.3.10. Suppose (Wt,Ft) satisfies Lévy’s characterization of the Brow-
nian motion. Namely, it is a square-integrable martingale of right-continuous fil-
tration and continuous sample path such that (W 2

t − t,Ft) is also a martingale.
Suppose Xt is a bounded Ft-adapted simple process. That is,

Xt = η01{0}(t) +
∞∑

i=0

ηi1(ti,ti+1](t) ,

where the non-random sequence tk > t0 = 0 is strictly increasing and unbounded
(in k), while the (discrete time) S.P. {ηn} is uniformly (in n and ω) bounded and

adapted to Ftn. Provide an explicit formula for At =
∫ t

0
X2

udu, then show that both

It =

k−1∑

j=0

ηj(Wtj+1 −Wtj ) + ηk(Wt −Wtk), when t ∈ [tk, tk+1) ,

and I2t − At are martingales with respect to Ft and explain why this implies that

EI2t = EAt and V
(2)
t (I) = At.

We move from the quadratic variation V (2) to the total variation V (1). Note that,
when q = 1, the limit in (5.3.1) always exists and equals the supremum over all
finite partitions π.

Example 5.3.11. The total variation is particularly simple for monotone func-
tions. Indeed, it is easy to check that if f(t) is monotone then its total variation is
V (1)(f) = maxt∈[a,b]{f(t)} −mint∈[a,b]{f(t)}. In particular, the total variation of
monotone functions is finite on finite intervals even though the functions may well
be discontinuous.

In contrast we have that

Proposition 5.3.12. The total variation of the Brownian motion W (t) is infinite
with probability one.
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Proof. Let α(h) = supa≤t≤b−h |W (t+ h)−W (t)|. With probability one, the
sample pathW (t) is continuous hence uniformly continuous on the closed, bounded

interval [a, b]. Therefore, α(h)
a.s.−→ 0 as h → 0. Let πn divide [a, b] to 2n equal

parts, so ‖πn‖ = 2−n(b − a). Then,

V
(2)
(πn)

(W ) =

2n−1∑

i=0

[W (a+ (i+ 1)‖πn‖)−W (a+ i‖πn‖)]2

≤ α(‖πn‖)
2n−1∑

i=0

|W (a+ (i+ 1)‖πn‖)−W (a+ i‖πn‖)| .(5.3.3)

Recall Exercise 5.3.8, that almost surely V
(2)
(πn)

(W ) → (b − a) < ∞. This, together

with (5.3.3) and the fact that α(‖πn‖) a.s.−→ 0, imply that

V
(1)
(πn)

(W ) =
2n−1∑

i=0

|W (a+ (i+ 1)‖πn‖)−W (a+ i‖πn‖)| a.s−→ ∞,

implying that V (1)(W ) = ∞ with probability one, as stated.

Remark. Comparing Example 5.3.11 and Proposition 5.3.12 we have that the
sample path of the Brownian motion is almost surely non-monotone on each non-
empty open interval. Here is an alternative, direct proof of this result (c.f. [KS97,
Theorem 2.9.9]).

Exercise 5.3.13. Let Wt be a Brownian motion on a probability space (Ω,F ,P).

(a) Let An =
⋂n

i=1{ω ∈ Ω : Wi/n(ω) −W(i−1)/n(ω) ≥ 0} and A = {ω ∈
Ω : t 7→ Wt(ω) is non-decreasing on [0, 1]}. Explain why A = ∩nAn why
P(An) = 2−n and why it implies that A ∈ F and P(A) = 0.

(b) Use the symmetry of the Brownian motion’s sample path (per Exercise
5.1.4) to deduce that the probability that it is monotone on [0, 1] is 0.
Verify that the same applies for any interval [s, t] with 0 ≤ s < t non-
random.

(c) Show that, for almost every ω, the sample path t 7→ Wt(ω) is non-
monotone on any non-empty open interval.
Hint: Let F denote the set of ω such that t 7→ Wt(ω) is monotone on
some non-empty open interval, observing that

F =
⋃

s,t∈Q,0≤s<t

{ω ∈ Ω : t 7→Wt(ω) is monotone on [s, t]}.

To practice your understanding, solve the following exercises.

Exercise 5.3.14. Consider the stochastic process Y (t) = W (t)2, for 0 ≤ t ≤ 1,
with W (t) a Brownian motion.

(a) Show that for any γ < 1/2 the sample path of Y (t) is locally Hölder
continuous of exponent γ with probability one.

(b) Compute E[V
(2)
(π) (Y )] for a finite partition π of [0, t] to k intervals, and

find its limit as ‖π‖ → 0.
(c) Show that the total variation of Y (t) on the interval [0, 1] is infinite.

Exercise 5.3.15.
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(a) Show that if functions f(t) and g(t) on [a, b] have zero and finite quadratic
variations, respectively (i.e. V (2)(f) = 0 and V (2)(g) < ∞ exists), then
V (2)(g + f) = V (2)(g).

(b) Show that if a (uniformly) continuous function f(t) has finite total vari-
ation then V (q)(f) = 0 for any q > 1.

(c) Suppose both Xt and Ãt have continuous sample path, such that t 7→ Ãt

has finite total variation on any bounded interval and Xt is a square-

integrable martingale. Deduce that then V
(2)
t (X + Ã) = V

(2)
t (X).

• What follows should be omitted at first reading.

We saw that the sample path of the Brownian motion is rather irregular, for it is
neither monotone nor Lipschitz continuous at any open interval. [Bre92, Theorem
12.25] somewhat refines the latter conclusion, showing that with probability one
the sample path is nowhere differentiable.

We saw that almost surely the sample path of the Brownian motion is Hölder
continuous of any exponent γ < 1

2 (see Exercise 5.3.7), and of no exponent γ > 1
2 .

The exact modulus of continuity of the Brownian path is provided by P. Lévy’s
(1937) theorem (see [KS97, Theorem 2.9.25, page 114]):

P(lim sup
δ↓0

1

g(δ)
sup

0≤s,t≤1

|t−s|≤δ

|W (t)−W (s)| = 1) = 1,

where g(δ) =
√
2δ log(1δ ) for any δ > 0. This means that |W (t) −W (s)| ≤ Cg(δ)

for any C > 1, δ > 0 small enough (possibly depending on ω), and |t− s| < δ.

Many other “irregularity” properties of the Brownian sample path are known. For
example ([KS97, Theorem 2.9.12]), for almost every ω, the set of points of local
maximum for the path is countable and dense in [0,∞), and all local maxima are
strict (recall that t is a point of local maximum of f(·) if f(s) ≤ f(t) for all s
in some open interval around t, and it is strict if in this interval also f(s) < f(t)
except at s = t). Moreover, almost surely, the zero set of points t where W (t) = 0,
is closed, unbounded, of zero Lebesgue measure, with accumulation point at zero
and no isolated points (this is [KS97, Theorem 2.9.6], or [Bre92, Theorem 12.35]).
These properties further demonstrate just how wildly the Brownian path change
its direction. Try to visualize a path having such properties!

We know thatWt is a Gaussian R.V. of variance t. As such it has the law of
√
tW1,

suggesting that the Brownian path grows like
√
t as t→ ∞. While this is true when

considering fixed, non-random times, it ignores the random fluctuations of the path.
Accounting for these we obtain the following Law of the Iterated Logarithm,

lim sup
t→∞

Wt(ω)√
2t log(log t)

= 1, almost surely.

Since −Wt is also a Brownian motion, this is equivalent to

lim inf
t→∞

Wt(ω)√
2t log(log t)

= −1, almost surely.
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Recall that tW1/t is also a Brownian motion (see Exercise 5.1.4), so the law of the
iterated logarithm is equivalent to

lim sup
t→0

Wt(ω)√
2t log(log(1t ))

= 1 & lim inf
t→0

Wt(ω)√
2t log(log(1t ))

= −1, almost surely,

providing information on the behavior of Wt for small t (for proof, see [Bre92,
Theorem 12.29]). An immediate consequence of the law of the iterated logarithm
is the law of large numbers for Brownian motion (which you have already proved
in Exercise 5.1.7).





CHAPTER 6

Markov, Poisson and Jump processes

We briefly explore in this chapter three important families of stochastic processes.
We start in Section 6.1 with Markov chains (in discrete time) and processes (in
continuous time). Section 6.2 deals with the particular example of the Poisson
process and its relation to Exponential inter-arrivals and order statistics. As we
see in Section 6.3 Markov jump processes are the natural extension of the Poisson
process, sharing many of its interesting mathematical properties.

6.1. Markov chains and processes

The rich theory of Markov processes is the subject of many text books and one
can easily teach a full course on this subject alone. Thus, we limit ourselves here
to the definition of Markov processes and to their most basic properties. For more
on Markov chains and processes, see [Bre92, Section 7] and [Bre92, Section 15],
respectively. Alternatively, see [GS01, Chapter 6] for Markov chains and processes
with countable state space.

As usual we start with the simpler case of discrete time stochastic processes.

Definition 6.1.1. A discrete time stochastic process {Xn, n = 0, 1, . . .} with
each R.V. Xn taking values in a measurable space (S,B) is called a Markov chain
if for every non-negative integer n and any set A ∈ B, almost surely P(Xn+1 ∈
A|X0, . . . , Xn) = P(Xn+1 ∈ A|Xn). The set S is called the state space of the
Markov chain.

Remark. Definition 6.1.1 is equivalent to the identity

E(f(Xn+1)|X0, . . . , Xn) = E(f(Xn+1)|Xn)

holding almost surely for each bounded measurable function f(·).
Definition 6.1.2. A homogeneous Markov chain is a Markov chain that has a
modification for which P(Xn+1 ∈ A|Xn) does not depend on n (except via the value
of Xn).

To simplify the presentation we assume hereafter that S is a closed subset of R
and B = BS is the corresponding restriction of the Borel σ-field to S.
The distribution of a homogeneous Markov chain is determined by its stationary
transition probabilities as stated next.

Definition 6.1.3. To each homogeneous Markov chain {Xn} with values in a
closed subset S of R correspond its stationary transition probabilities p(A|x) such
that p(·|x) is a probability measure on (S,B) for any x ∈ S; p(A|·) is measurable on
B for any A ∈ B, and almost surely p(A|Xn) = P(Xn+1 ∈ A|Xn) for all n ≥ 0.

111
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Many S.P. of interest are homogeneous Markov chains. One example that we have

already seen is the random walk Sn =
n∑

i=1

ξi, where ξi are i.i.d. random variables.

Indeed, Sn+1 = Sn + ξn+1 with ξn+1 independent of Gn = σ(S0, . . . , Sn), hence
P(Sn+1 ∈ A|Gn) = P(Sn + ξn+1 ∈ A|Sn). With ξn+1 having the same law as ξ1,
we thus get that P(Sn + ξn+1 ∈ A|Sn) = p(A|Sn) for the stationary transition
probabilities p(A|x) = P(ξ1 ∈ {y − x : y ∈ A}). By similar reasoning we see that
another example of a homogeneous Markov chain is the branching process Zn of
Definition 4.6.1, with stationary transition probabilities p(A|x) = P(

∑x
j=1Nj ∈ A)

for integer x ≥ 1 and p(A|0) = 10∈A.

Remark. Many Markov chains are not martingales. For example, a sequence
of independent variables Xn is a Markov chain, but unless P(Xn = c) = 1 for
some c non-random and all n, it is not a martingale (for E[Xn+1|X0, . . . , Xn] =
EXn+1 6= Xn(ω)). Likewise, many martingales do not have the Markov property.
For example, the sequence Xn = X0(1 + Sn) with X0 uniformly chosen in {1, 3}
independently of the simple random walk Sn of zero-mean, is a martingale, since

E[Xn+1|X0, . . . , Xn] = Xn +X0E[ξn+1|X0, . . . , Xn] = Xn ,

but not a Markov chain, since X2
0 is not a measurable on σ(Xn), hence

E[X2
n+1|X0, . . . , Xn] = X2

n +X2
0 6= X2

n +E[X2
0 |Xn] = E[X2

n+1|Xn] .

Let Px denote the law of the homogeneous Markov chain starting at X0 = x.
For example, in the context of the random walk we normally start at S0 = 0, i.e.
consider the law P0, whereas for the branching process example we normally take
Z0 = 1, hence in this context consider the law P1.
Whereas it suffices to know the stationary transition probability p to determine
Px for any given x ∈ S, we are often interested in settings in which X0 is a R.V. To
this end, we next define the initial distribution associated with the Markov chain.

Definition 6.1.4. The initial distribution of a Markov chain is the probability
measure π(A) = P(X0 ∈ A) on (S,B).
Indeed, by the tower property (with respect to σ(X0)), it follows from our defini-
tions that for any integer k ≥ 0 and a (measurable) set B ∈ Bk+1,

P((X0, X1, . . . , Xk) ∈ B) =

∫
Px((x,X1, . . . , Xk) ∈ B)π(dx) ,

where
∫
h(x)π(dx), or more generally

∫
h(x)p(dx|y), denote throughout the Lebesgue

integral with respect to x (with y, if present, being an argument of the resulting
function). For example, the preceding formula means the expectation (as in Defi-
nition 1.2.19), of the measurable function h(x) = Px((x,X1, . . . , Xk) ∈ B) when x
is an S-valued R.V. of law π(·).
While we do not pursue this direction further, computations of probabilities of
events of interest for a Markov chain are easier when S is a countable set. In this
case, B = 2S and for any A ⊆ S

p(A|x) =
∑

y∈A

p(y|x) ,

so the stationary transition probabilities are fully determined by p(y|x) ≥ 0 such
that

∑
y∈S p(y|x) = 1 for each x ∈ S, and all our Lebesgue integrals are merely
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sums. For example, this is what we have for the simple random walk (with S the
set of integers, and p(x+ 1|x) = P(ξ1 = 1) = 1 − p(x− 1|x) for any integer x), or
the branching process (with S the set on non-negative integers). Things are even
simpler when S is a finite set, in which case identifying S with the set {1, . . . ,m}
for some m < ∞, we view p(y|x) as the (x, y)-th entry of an m ×m dimensional
transition probability matrix, and use matrix theory for evaluating all probabilities
of interest.

Exercise 6.1.5. Consider the probability space corresponding to a sequence of
independent rolls of a fair six-sided die. Determine which of the following S.P. is
then a homogeneous Markov chain and for each of these specify its state space and
stationary transition probabilities.

(a) Xn: the largest number rolled in n rolls.
(b) Nn: the number of 6’s in n rolls.
(c) Cn: at time n, the number of rolls since the most recent 6.
(d) Bn: at time n, the number of rolls until the next 6.

Here is a glimpse of the rich theory of Markov chains of countable state space
(which is beyond the scope of this course).

Exercise 6.1.6. Suppose {Xn} is a homogeneous Markov chain of countable state
space S and for each x ∈ S let ρx = Px(Tx < ∞) for the (first) return time
Tx = inf{n ≥ 1 : Xn = x}. We call x ∈ S a recurrent state if ρx = 1. That is,
starting at x the Markov chain returns to state x in a finite time w.p.1. (and we
call x ∈ S a transient state if ρx < 1). Let Nx =

∑∞
n=1 I{Xn=x} count the number

of visits to state x by the Markov chain (excluding time zero).

(a) Show that Px(Nx = k) = ρkx(1 − ρx) and hence Ex(Nx) = ρx/(1− ρx).
(b) Deduce that x ∈ S is a recurrent state if and only if

∑
n Px(Xn = x) = ∞.

Exercise 6.1.7. Let Xn be a symmetric simple random walk in Zd. That is, Xn =

(X
(1)
n , . . . , X

(d)
n ) where X

(i)
n are for i = 1, . . . , d independent symmetric simple one-

dimensional random walks. That is, from the current state x ∈ Zd the walk moves
to one of the 2d possible neighboring states (x1 ± 1, . . . , xd ± 1) with probability
2−d, independent of all previous moves. Show that for d = 1 or d = 2 the origin
(0, . . . , 0) is a recurrent state of this Markov chain, while for any d ≥ 3 it is a
transient state.
Hint: Observe that Xn can only return to the origin when n is even. Then combine
Exercise 6.1.6 with the approximation

(
2n
n

)
2−2n = (4πn)−1/2(1 + o(1)).

A second setting in which computations are more explicit is when S = R (or a
closed interval thereof), and for each x the stationary transition probability p(·|x)
has a density p(y|x) ≥ 0 (such that

∫
p(y|x)dy = 1). Such density p(y|x) is often

called the (stationary) transition probability kernel, as in this case for any bounded
Borel function h(·)

Ex(h(X1)) =

∫
h(y)dp(y|x) =

∫
h(y)p(y|x)dy ,

so probabilities are computed by iterated one-dimensional Riemann integrals in-
volving the integration kernel p(·|·).
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Turning hereafter to the general setting, with Gn = σ(X0, . . . , Xn) denoting its
canonical filtration, it is not hard to check that any homogeneous Markov chain
{Xn} has the Markov property,

(6.1.1) P((Xτ , Xτ+1, . . . , Xτ+k) ∈ B|Gτ ) = PXτ ((X0, . . . , Xk) ∈ B) ,

holding almost surely for any integer k ≥ 0, non-random τ ≥ 0 and B ∈ Bk+1.

We state next the strong Markov property, one of the most important features of
Markov chains.

Proposition 6.1.8 (Strong Markov Property). Let Xn be a homogeneous Markov
chain. Then, (6.1.1) holds for any almost surely finite stopping time τ with respect
to its canonical filtration Gn, with Gτ denoting the corresponding stopped σ-field of
Definition 4.3.21 (c.f. [Bre92, Proposition 7.8]).

The regular Markov property corresponds to the special case of τ non-random.
Another special case is P(Xτ+1 ∈ A|Gτ ) = p(A|Xτ ) almost surely (take k = 1 in
the proposition).

We conclude with another example of a Markov chain, the first-order auto-regressive
(AR) process, common in time series modeling.

Exercise 6.1.9. Let ξi, i = 0, 1, 2, . . . be a Gaussian stochastic process with ξi in-
dependent, each having zero-mean and variance one. Fixing non-random constants
α and β, let X0 = βξ0 and Xn = αXn−1 + ξn for any n ≥ 1.

(a) Check that Xn is a homogeneous Markov chain with state space S =
R. Provide its stationary transition probabilities and the characteristic
function of its initial distribution.

(b) Check that Xn is adapted to the filtration Fn = σ(ξk, k = 0, . . . , n).
(c) Show that Xn is a zero-mean, discrete time, Gaussian stochastic process.
(d) Show that the auto-correlation ρ(n,m) = E(XnXm) is such that ρ(n, n+

ℓ) = αℓρ(n, n) for any n, ℓ ≥ 0.
(e) Find a recursion formula for ρ(n, n) in terms of ρ(n−1, n−1) for n ≥ 1.

Fixing −1 < α < 1, find the value of β > 0 for which the stochastic
process {Xn} is stationary. What would happen if |α| ≥ 1?

We move now to deal with continuous time, starting with the definition of a
Markov process.

Definition 6.1.10. A stochastic process X(t) indexed by t ∈ [0,∞) and taking
values in a measurable space (S,B) is called a Markov process if for any t, u ≥ 0
and A ∈ B we have that almost surely

P(X(t+ u) ∈ A|σ(X(s), s ≤ t)) = P(X(t+ u) ∈ A|X(t)).

Equivalently, we call X(t) a Markov process if for any t, u ≥ 0 and any bounded
measurable function f(·) on (S,B), almost surely,

E(f(X(t+ u))|σ(X(s), s ≤ t)) = E(f(X(t+ u))|X(t)).

The set S is called the state space of the Markov process.
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Similar to Definition 6.1.4 the initial distribution of a Markov process is the prob-
ability measure π(A) = P(X(0) ∈ A). Taking hereafter S as a closed subset of R
and B = BS, as in the discrete time setting, the law Px of the process starting at
non-random X(0) = x is determined by its transition probabilities, which we define
next.

Definition 6.1.11. For each t > s and fixed x ∈ S there exists a probability
measure pt,s(·|x) on (S,B) such that for each fixed A ∈ B, the function pt,s(A|·) is
measurable and

(6.1.2) P(X(t) ∈ A|X(s)) = E(IX(t)∈A|X(s)) = pt,s(A|X(s)) a.s.

Such a collection pt,s(A|x) is called the transition probabilities for the Markov
process {X(t)}.

The transition probabilities pt,s(·|·), together with the initial distribution π(·)
determine the finite dimensional distributions of the Markov process. Indeed, for
each non-negative integer k, every 0 = t0 < t1 < · · · < tk and A0, . . . , Ak ∈ B we
have that

P(X(tk) ∈ Ak, . . . , X(t0) ∈ A0)

=

∫

A0

· · ·
∫

Ak

ptk,tk−1
(dxk|xk−1) · · · pt1,t0(dx1|x0)π(dx0)(6.1.3)

(using Lebesgue’s integrals in the above). We note in passing that as for Markov
chains, computationally things are simpler when S is a finite or countable set, for
which we can replace the integrals by sums in (6.1.3) and everywhere else, or when
S = R and pt,s(·|x) have densities, in which case we can use the standard Riemann
integrals.

We turn to deal with the constraints imposed on the collection pt,s(·|·) for different
values of t and s. To this end, combining the tower property for Gu = σ(X(v), v ≤ u)
at a fixed u ∈ (s, t), with the definition of a Markov process, convince yourself that
(6.1.2) implies that the Chapman-Kolmogorov equations

(6.1.4) pt,s(A|x) =
∫
pt,u(A|y)pu,s(dy|x) ,

hold almost surely in x chosen according to the law of X(s), for each A ∈ B
and t > u > s ≥ 0 (c.f. [Bre92, Proposition 15.9] where these equations are
derived from (6.1.3)). In case you wonder, the integral on the right side of (6.1.4)
stands for the expectation (as in Definition 1.2.19), of the measurable function
h(y) = pt,u(A|y) when y is an S-valued R.V. of law pu,s(·|x) (and with A and
t, u, s, x being fixed parameters). As before, such integrals are more explicit in case
S is finite or countable, or when the relevant transition probabilities pu,s(·|x) have
densities.

For modeling purposes it is more effective to specify the collection pt,s(A|x) rather
than starting with the Markov process X(t) and its probability space. When doing
so, we obviously wish to know that there exists a Markov process whose transition
probabilities coincide with those we specify. As we already saw, a necessary condi-
tion is that the Chapman-Kolmogorov equations hold almost surely in x. Things
are much nicer when these equations hold for all x, motivating our next definition.
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Definition 6.1.12. We say that pt,s(A|x) for t > s ≥ 0, x ∈ S and A ∈ B are
regular transition probabilities if pt,s(·|x) are probability measures on (S,B), the
functions pt,s(A|·) are Borel measurable and the Chapman-Kolmogorov equations
(6.1.4) hold for every t > u > s ≥ 0, x ∈ S and A ∈ B.
Indeed, as we state next, for any regular transition probabilities and any prob-
ability measure π on (S,B) there exists a Markov process with these transition
probabilities and having initial distribution π (c.f. [Bre92, Theorem 5.11] for the
proof). In this respect, the Chapman-Kolmogorov equations characterize all struc-
tural relations between the different probability measures pt,s(·|·).
Theorem 6.1.13. Given regular transition probabilities pt,s(·|·) and a probability
measure π(·) on (S,B), the identities (6.1.3) define the finite dimensional distribu-
tions of a Markov process {X(t)} having the specified transition probabilities and
the initial distribution π.

Similarly to Markov chains, we focus next on the (time) homogeneous Markov
processes, associated with stationary regular transition probabilities.

Definition 6.1.14. A homogeneous Markov process is a Markov process with
regular transition probabilities of the form pt,s(·|·) = pt−s(·|·), which in turn are
called stationary regular transition probabilities.

Setting t̃ = t−u and s̃ = u− s it is easy to verify that for a homogeneous Markov
process the Chapman-Kolmogorov equations (6.1.4) simplify to

pt̃+s̃(A|x) =
∫
pt̃(A|y)ps̃(dy|x) ∀t̃, s̃ ≥ 0.

Further, any such process satisfies the regular Markov property.

Proposition 6.1.15. Suppose X(t) is a homogeneous Markov process, with Gt

denoting its canonical filtration σ(X(s), s ≤ t) and Px the law of the process starting
at X(0) = x. Then, any such process has the regular Markov property. That is,

(6.1.5) Px(X(·+ τ) ∈ Γ|Gτ ) = PX(τ) (X(·) ∈ Γ) , a.s.

for any x ∈ R, non-random τ ≥ 0 and Γ in the cylindrical σ-field B[0,∞) of Defini-
tion 3.1.15.

As you show next, being a Markov process is a property that is invariant un-
der invertible non-random mappings of the state space as well as under invertible
monotone time mappings.

Exercise 6.1.16. Let {Xt, t ≥ 0} be a Markov process of state space S. Suppose
ht : S → S′ are measurable and invertible for any fixed t ≥ 0 and g : [0,∞) → [0,∞)
is invertible and strictly increasing.

(a) Verify that Yt = ht(Xg(t)) is a Markov process.
(b) Show that if {Xt} is a homogeneous Markov process then so is {h(Xt)}.

A host of particularly simple Markov processes is provided by our next proposition.

Proposition 6.1.17. Every continuous time stochastic process of independent in-
crements is a Markov process. Further, every continuous time S.P. of stationary
independent increments is a homogeneous Markov process.
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For example, Proposition 6.1.17 implies that the Brownian motion is a homoge-
neous Markov process. It corresponds to initial distribution X(0) = 0 and having
the stationary regular transition probabilities

(6.1.6) pt(A|x) =
∫

A

e−(y−x)2/2t

√
2πt

dy

(note that we have here a stationary transition kernel e−(y−x)2/2t/
√
2πt).

Remark. To re-cap, we have seen three main ways of showing that a S.P. {Xt, t ≥
0} is a Markov process:

(a) Computing P(Xt+h ∈ A|Gt) directly and checking that it only depends
on Xt (and not on Xs for s < t), per Definition 6.1.10.

(b) Showing that the process has independent increments and applying Propo-
sition 6.1.17.

(c) Showing that it is an invertible function of another Markov process, and
appealing to Exercise 6.1.16.

Our choice of name for pt(·|·) is motivated in part by the following fact.

Proposition 6.1.18. If a Markov process or a Markov chain is also a stationary
process, then it is a homogeneous Markov process, or Markov chain, respectively.

Note however that many homogeneous Markov processes and Markov chains are
not stationary processes. Convince yourself that among such examples are the
Brownian motion (in continuous time) and the random walk (in discrete time).

Solve the next two exercises to practice your understanding of the definition of
Markov processes.

Exercise 6.1.19. Let Bt =Wt−min(t, 1)W1, Yt = eWt and Ut = e−t/2Wet , where
Wt is a Brownian motion.

(a) Determine which of the S.P. Wt, Bt, Ut and Yt is a Markov process for
t ≤ 1 and among those, which are also time homogeneous.
Hint: Consider part (a) of Exercise 5.1.9.

(b) Provide an example (among these S.P.) of a homogeneous Markov process
whose increments are neither independent nor stationary.

(c) Provide an example (among these S.P.) of a Markov process of stationary
increments, which is not a homogeneous Markov process.

Exercise 6.1.20. Explain why Zt = Wt + rt, t ≥ 0, with Wt a Brownian mo-
tion and r a non-random constant, is a homogeneous Markov process. Provide
the state space S, the initial distribution π(·) and the stationary regular transition
probabilities pt(A|x) for this process.

The homogeneous Markov chains are fully characterized by the initial distributions
and the (one-step) transition probabilities p(·|·). In contrast, we need to specify the
transition probabilities pt(·|·) for all t > 0 in order to determine all distributional
properties of the associated homogeneous Markov process. While we shall not do so,
in view of the Chapman-Kolmogorov relationship, using functional analysis one may
often express pt(·|·) in terms of a single operator, which is called the “generator” of
the Markov process. For example, the generator of the Brownian motion is closely
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related to the heat equation, hence the reason that many computations can then
be explicitly done via the theory of PDE.

Similar to the case of Markov chains, we seek to have the strong Markov property
for a homogeneous Markov process. Namely,

Definition 6.1.21. A homogeneous Markov process is called a strong Markov
process if (6.1.5) holds also for any almost surely finite stopping time τ with respect
to its canonical filtration Gt.

Recall that we have already seen in Proposition 5.2.3 that

Corollary 6.1.22. The Brownian motion is a strong Markov process.

Unfortunately, the theory of Markov processes is more involved than that of
Markov chains and in particular, not all homogeneous Markov processes have the
strong Markov property. Indeed, as we show next, even having also continuous
sample path does not imply the strong Markov property.

Example 6.1.23. With X0 independent of the Brownian motion Wt, consider the
S.P. Xt = X0 +WtI{X0 6=0} of continuous sample path. Noting that IX0=0 = IXt=0

almost surely (as the difference occurs on the event {ω : Wt(ω) = −X0(ω) 6= 0}
which is of zero probability), by the independence of increments of Wt, hence of Xt

in case X0 6= 0, we have that almost surely,

P(Xt+u ∈ A|σ(Xs, s ≤ t)) = I0∈AIX0=0 +P(Wt+u −Wt +Xt ∈ A|Xt)IX0 6=0

= I0∈AIXt=0 + pt(A|Xt)IXt 6=0 ,

for pt(·|x) of (6.1.6). Consequently, Xt is a homogeneous Markov process (regard-
less of the distribution of X0), whose stationary regular transition probabilities are
given by pt(·|x) of (6.1.6) for x 6= 0 while pt(A|0) = I0∈A. By Proposition 6.1.15
Xt satisfies the regular Markov. However, this process does not satisfy the strong
Markov property. For example, (6.1.5) does not hold for the almost surely finite
stopping time τ = inf{t ≥ 0 : Xt = 0} and Γ = {x(·) : x(1) > 0} (in which case its
left side is 1

21x 6=0 whereas its right side is zero).

Our next proposition further helps in clarifying where the extra difficulty comes
from.

Proposition 6.1.24. The Markov property (6.1.5) holds for any stopping time τ
(with respect to the canonical filtration of the homogeneous Markov process {X(t)}),
provided τ assumes at most a countable number of non-random values (for a proof,
see [Bre92, Proposition 15.19]).

Indeed, any stopping time for a Markov chain assumes at most a countable number
of values {0, 1, 2, . . .}, hence the reason that every homogeneous Markov chain has
the strong Markov property.

In the following exercise you use the strong Markov property to compute the
probability that a Brownian motion that starts at x ∈ (c, d) reaches level d before
it reaches level c (i.e., the event Wτa,b

= b for τa,b of Exercise 4.3.18 with b = d− x
and a = x− c).

Exercise 6.1.25. Consider the stopping time τ = inf{t ≥ 0 : Xt ≥ d or Xt ≤ c}
and the law Px of the Markov process Xt =Wt+x, where Wt is a Brownian motion
and x ∈ (c, d) non-random.
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(a) Using the strong Markov property of Xt show that u(x) = Px(Xτ = d)
is an harmonic function, namely u(x) = (u(x+ r) + u(x− r))/2 for any
c ≤ x − r < x < x + r ≤ d, with boundary conditions u(c) = 0 and
u(d) = 1.

(b) Check that v(x) = (x− c)/(d− c) is an harmonic function satisfying the
same boundary conditions as u(x). Since boundary conditions at x = c
and x = d uniquely determine the value of harmonic function in (c, d)
(a fact you do not need to prove), you thus showed that Px(Xτ = d) =
(x− c)/(d− c).

6.2. Poisson process, Exponential inter-arrivals and order statistics

Following [Bre92, Chapter 14.6], we are going to consider throughout continuous
time stochastic processes Nt, t ≥ 0 satisfying the following condition.

Condition. C0 Each sample path Nt(ω) is piecewise constant, non-decreasing,

right continuous, with N0(ω) = 0, all jump discontinuities are of size one, and there
are infinitely many of them.

Associated with each sample path Nt(ω) satisfying C0 are the jump times 0 =

T0 < T1 < · · · < Tn < · · · such that Tk = inf{t ≥ 0 : Nt ≥ k} for each k, or
equivalently

Nt = sup{k ≥ 0 : Tk ≤ t}.
In applications we find suchNt as counting the number of discrete events occurring
in the interval [0, t] for each t ≥ 0, with Tk denoting the arrival or occurrence time
of the k-th such event. For this reason processes like Nt are also called counting
processes.

Recall Example 1.1.4 that a random variable N has the Poisson(µ) law if

P(N = k) =
µk

k!
e−µ, k ≥ 0, integer,

and that a stochastic process Nt has independent increments if the random variable
Nt+h −Nt is independent of σ(Ns : 0 ≤ s ≤ t) for any h > 0 and t ≥ 0.

We define next the Poisson process. To this end, we set the following condition:

Condition. C1 For any k and any 0 < t1 < · · · < tk, the increments Nt1 ,

Nt2 −Nt1 , . . . , Ntk −Ntk−1
, are independent random variables and for some λ > 0

and all t > s ≥ 0, the increment Nt −Ns has the Poisson(λ(t− s)) law.

Equipped with Conditions C0 and C1 we have

Definition 6.2.1. Among the processes satisfying C0 the Poisson Process is the

unique S.P. having also the property C1 .

Thus, the Poisson process has independent increments, each having a Poisson law,
where the parameter of the count Nt − Ns is proportional to the length of the
corresponding interval [s, t]. The constant of proportionality λ is called the rate or
intensity of the Poisson process.

In particular, it follows from our definition that Mt = Nt − λt is a MG (see
Proposition 4.2.3). As you show next, this provides an example of a Doob-Meyer
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Figure 1. A sample path of a Poisson process.

decomposition with a continuous increasing process for a martingale of discontin-
uous sample path. It also demonstrates that continuity of sample path is essential
for the validity of both Lévy’s martingale characterization and Proposition 5.2.2
about the time changed Brownian motion.

Exercise 6.2.2. Show that the martingale Mt = Nt −λt is square-integrable, and
such that M2

t −λt is a martingale for the (right-continuous) filtration σ(Ns, s ≤ t).

In a similar manner, the independence of increments of the Poisson process pro-
vides us with the corresponding exponential martingales (as it did for the Brownian
motion). Here we get the martingales Lt = eθNt−βt, for some β = β(θ, λ) and all θ
(with β(·) computed by you in part (a) of Exercise 6.2.9).

Remark 6.2.3. It is possible to define in a similar manner the counting process for
discrete events on Rd, any integer d ≥ 2. This is done by assigning random integer
countsNA to Borel subsets A of Rd in an additive manner (that is NA∪B = NA+NB

whenever A and B are disjoint). Such processes are called point processes, so the
Poisson process is perhaps the simplest example of a point process.

Just as the Brownian motion has many nice properties, so does the Poisson process,
starting with the following characterization of this process (for its proof, see [Bre92,
Theorem 14.23]).

Proposition 6.2.4. The Poisson processes are the only stochastic processes with

stationary independent increments (see Definition 3.2.27), that satisfy C0 .

Next, note that the Poisson process is a homogeneous Markov process, whose state
space S is {0, 1, 2, . . .} (see Proposition 6.1.17), with the initial distribution N0 = 0
and the stationary regular transition probabilities

pt(x+ k|x) = (λt)k

k!
e−λt, k, x ≥ 0, integers.

Furthermore, we have, similarly to Corollary 6.1.22, that

Proposition 6.2.5. The Poisson process is a strong Markov process.

Remark. Note that the Poisson process is yet another example of a process with
stationary independent increments that is clearly not a stationary process.
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Another way to characterize the Poisson process is by the joint distribution of the
jump (arrival) times {Tk}. To this end, recall that

Proposition 6.2.6 (Memoryless property of the Exponential law). We say that
a random variable T has Exponential(λ) law if P(T > t) = e−λt, for all t ≥ 0 and
some λ > 0. Except for the trivial case of T = 0 w.p.1. these are the only laws for
which P(T > x+ y|T > y) = P(T > x), for all x, y ≥ 0.

We check only the easy part of the proposition, that is, taking T of Exponential(λ)
law we have for any x, y ≥ 0,

P(T > x+ y|T > y) =
P(T > x+ y)

P(T > y)
=
e−λ(x+y)

e−λy
= e−λx = P(T > x) .

Exercise 6.2.7. For T of Exponential(λ) law use integration by parts to show that
the S.P. Xt = I[T,∞)(t) − λmin(t, T ) is of zero mean. Then use the memoryless
property of T to deduce that Xt is a martingale.

In view of Proposition 6.2.6, Nt having independent increments is related to the
following condition of having Exponentially distributed inter-arrival times.

Condition. C2 The gaps between jump times Tk − Tk−1 for k = 1, 2, . . . are

i.i.d. random variables, each of Exponential(λ) law.

Indeed, an equivalent definition of the Poisson process is:

Proposition 6.2.8. A stochastic process Nt that satisfies C0 is a Poisson process

of rate λ if and only if it satisfies C2 (c.f. [Bre92, page 309]).

Proposition 6.2.8 implies that for each k, the k-th arrival time Tk of the Pois-
son process of rate λ has the Gamma(k, λ) law corresponding to the sum of k
i.i.d. Exponential(λ) random variables. In the next exercise we arrive at the same
conclusion by an application of Doob’s optional stopping theorem.

Exercise 6.2.9. Let Nt, t ≥ 0 be a Poisson process of rate λ.

(a) Show that Lt = exp(−θNt−βt) is a martingale for the canonical filtration
Gt = σ(Ns, 0 ≤ s ≤ t), whenever β = −λ(1 − e−θ).

(b) Check that {Tk ≤ t} = {Nt ≥ k} ∈ Gt and deduce that Tr = min(t ≥ 0 :
Nt = r) is a stopping time with respect to Gt, for each positive integer r.

(c) Using Doob’s optional stopping theorem for the martingale (Lt,Gt) (see
Theorem 4.3.17), compute the value of E(e−βTr) for β > 0.

(d) Check that the preceding evaluation of E(e−βTr) equals what you get by
assuming that Tr has the Gamma distribution of parameters r and λ.
That is, by taking Tr with the probability density function

fTr (t) = λe−λt (λt)
r−1

(r − 1)!
∀t ≥ 0 .

Remark. Obviously the sample path of the Poisson process are never continuous.
However, P(Nt+h −Nt ≥ 1) = 1− e−λh → 0 as h ↓ 0, implying that P(Tk = t) = 0
for all t ≥ 0 and k = 1, 2, . . ., so this S.P. has no fixed discontinuities (i.e. occurring
at non-random times). The Poisson process is a special case of the family of Markov
jump processes of Section 6.3, all of whom have discontinuous sample path but no
fixed discontinuities.
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Use the next exercise to check your understanding of the various characterizations
and properties of the Poisson process.

Exercise 6.2.10. Let {Nt} be a Poisson process with rate λ > 0 and τ a finite
stopping time for its canonical filtration. State which of the four stochastic processes

N
(1)
t = 2Nt, N

(2)
t = N2t, N

(3)
t = Nt2 and N

(4)
t = Nτ+t −Nτ is a Poisson process

and if so, identify its rate.

The Poisson process is related not only to the Exponential distribution but also
to the Uniform measure, as we state next (and for a proof c.f. [KT75, Theorem
4.2.3]).

Proposition 6.2.11. Fixing positive t and a positive integer n let Ui be i.i.d.
random variables, each uniformly distributed in [0, t] and consider their order sta-
tistics U∗

i for i = 1, . . . , n. That is, permute the order of Ui for i = 1, . . . , n
such that U∗

1 ≤ U∗
2 ≤ · · · ≤ U∗

n while {U1, . . . , Un} = {U∗
1 , . . . , U

∗
n} (for example

U∗
1 = min(Ui : i = 1, . . . , n) and U∗

n = max(Ui : i = 1, . . . , n)). The joint distribu-
tion of (U∗

1 , . . . , U
∗
n) is then precisely that of the first n arrival times (T1, . . . , Tn)

of a Poisson process, conditional on the event Nt = n. Alternatively, fixing n and
0 ≤ t1 ≤ t2 ≤ · · · ≤ tn ≤ t, we have that

P(Tk ≤ tk, k = 1, . . . , n|Nt = n) =
n!

tn

∫ t1

0

∫ t2

x1

· · ·
∫ tn

xn−1

dx1dx2 · · · dxn .

Here are a few applications of Proposition 6.2.11.

Exercise 6.2.12. Let Tk =
∑k

i=1 ξi for independent Exponential(λ) random vari-
ables ξi, i = 1, 2, . . . and Nt = sup{k ≥ 0 : Tk ≤ t} the corresponding Poisson
process.

(a) Express v = E(
∑Nt

k=1(t − Tk)) in terms of g(n) = E(
∑n

k=1 Tk|Nt = n)
and the law of Nt.

(b) Compute the values of g(n) = E(
∑n

k=1 Tk|Nt = n).
(c) Compute the value of v.
(d) Suppose that Tk is the arrival time to the train station of the k-th pas-

senger on a train that departs the station at time t. What is the meaning
of Nt and of v in this case?

Exercise 6.2.13. Let Nt be a Poisson process of rate λ > 0.

(a) Fixing 0 < s ≤ t show that conditional on Nt = n, the R.V. Ns has the
Binomial(n, p) law for p = s/t. That is,

P(Ns = k|Nt = n) =

(
n

k

)(s
t

)k(
1− s

t

)n−k
, k = 0, 1, . . . , n.

(b) What is the probability that the first jump of this process occurred before
time s ∈ [0, t] given that precisely n jumps have occurred by time t?

Exercise 6.2.14. Let Nt be a Poisson process of rate λ > 0. Compute v(n) =
E[Ns|Nt = n] and E[Ns|Nt], first for s > t, then for 0 ≤ s ≤ t.

Exercise 6.2.15. Commuters arrive at a bus stop according to a Poisson process
with rate λ > 0. Suppose that the bus is large enough so that anyone who is waiting
for the bus when it arrives is able to board the bus.
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(a) Suppose buses arrive every T units of time (for non-random T > 0).
Immediately after a bus arrives and all the waiting commuters board it,
you uniformly and independently select a commuter that just boarded the
bus. Find the expected amount of time that this commuter waited for the
bus to arrive.

(b) Now supposes buses arrive according to a Poisson process with rate 1/T .
Assume that arrivals of commuters and buses are independent. What is
the expected waiting time of a randomly selected commuter on the bus
in this case? Is it different than the expected waiting time of the first
commuter to arrive at the bus stop?

We have the following interesting approximation property of the Poisson distribu-
tion (see also [GS01, Section 4.12]).

Theorem 6.2.16 (Poisson approximation). Suppose that for each n, the random

variables Z
(n)
l are independent, non-negative integers where P(Z

(n)
l = 1) = p

(n)
l

and P(Z
(n)
l ≥ 2) = ε

(n)
l are such that as n→ ∞,

(i).

n∑

l=1

p
(n)
l → λ ∈ (0,∞),

(ii).
n∑

l=1

ε
(n)
l → 0,

(iii). max
l=1,··· ,n

{p(n)l } → 0.

Then, Sn =

n∑

l=1

Z
(n)
l converges in distribution to Poisson(λ) when n→ ∞.

For example, consider Z
(n)
l = {0, 1} with P(Z

(n)
l = 1) = λ

n , resulting with Sn

having the Binomial(n, λn ) law. In this case, ε
(n)
l = 0 and p

(n)
l = λ

n , with

n∑

l=1

p
(n)
l =

λ. Hence, applying Theorem 6.2.16 we have that the Binomial(n, λn ) probability
measures converge weakly as n → ∞ to the Poisson(λ) probability measure. This
is the classical Poisson approximation of the Binomial, often derived in elementary
probability courses.

The Poisson approximation theorem relates the Poisson process to the following
condition.

Condition. C3 The S.P. Nt has no fixed discontinuities, that is P(Tk = t) = 0

for all k and t ≥ 0. Also, for any fixed k, 0 < t1 < t2 < · · · < tk and non-negative
integers n1, n2, · · · , nk,

P(Ntk+h −Ntk = 1|Ntj = nj , j ≤ k) = λh+ o(h),

P(Ntk+h −Ntk ≥ 2|Ntj = nj , j ≤ k) = o(h),

where o(h) denotes a function f(h) such that h−1f(h) → 0 as h ↓ 0.

Indeed, as we show next, Theorem 6.2.16 plays for the Poisson process the same
role that the Central Limit Theorem plays for the Brownian motion, that is, provid-
ing a characterization of the Poisson process that is very attractive for the purpose
of modeling real-world phenomena.
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Proposition 6.2.17. A stochastic process Nt that satisfies C0 is a Poisson pro-

cess of rate λ if and only if it satisfies condition C3 .

Proof. (omit at first reading) Fixing k, the tj and the nj, denote by A the
event {Ntj = nj , j ≤ k}. For a Poisson process of rate λ the random variable

Ntk+h−Ntk is independent of A with P(Ntk+h−Ntk = 1) = e−λhλh and P(Ntk+h−
Ntk ≥ 2) = 1 − e−λh(1 + λh). Since e−λh = 1 − λh + o(h) we see that the

Poisson process satisfies C3 . To prove the converse, we start with a S.P. Nt

that satisfies both C0 and C3 . Fixing A as above, let Dt = Ntk+t − Ntk and

pn(t) = P(Dt = n|A). To show that Nt satisfies C1 , hence is a Poisson process, it

suffices to show that pn(t) = e−λt(λt)n/n! for any t ≥ 0 and non-negative integer
n (the independence of increments then follows by induction on k). It is trivial to
check the case of t = 0, that is, pn(0) = 1n=0. Fixing u > 0 and s ≥ 0 we have

that |pn(u) − pn(s)| ≤ P(Du 6= Ds|A) ≤ P(Ntk+u 6= Ntk+s)/P(A). By C3 we

know that Nt is continuous in probability so taking u → s yields that s 7→ pn(s)
is continuous on [0,∞). If Dt+h = n then necessarily Dt = m for some m ≤ n.
Fixing n and t > 0, by the rules of conditional probability

pn(t+ h) =

n∑

m=0

pm(t)P(Dt+h −Dt = n−m|Am) ,

where Am = A ∩ {Dt = m}. Applying C3 for each value of m separately (with

tk+1 = tk + t and nk+1 = nk +m there), we thus get that pn(t + h) = pn(t)(1 −
λh) + pn−1(t)λh+ o(h). Taking h ↓ 0 gives the system of differential equations

p′n(t) = −λpn(t) + λpn−1(t) ,

with boundary conditions p−1(t) = 0 for all t and pn(0) = 1n=0 (a-priori, t > 0
and p′n(t) stands for the right-hand derivative, but since t 7→ pn(t) is continuous,
the differential equations apply also at t = 0 and p′n(t) can be taken as a two-sided
derivative when t > 0). It is easy to check that pn(t) = e−λt(λt)n/n! satisfies
these equations. It is well known that the solution of such a differential system of
equations is unique, so we are done.

The collection of all Poisson processes is closed with respect to the merging and
thinning of their streams.

Proposition 6.2.18. If N
(1)
t and N

(2)
t are two independent Poisson processes of

rates λ1 and λ2 respectively, then N
(1)
t +N

(2)
t is a Poisson process of rate λ1 + λ2.

Conversely, the sub-sequence of jump times obtained by independently keeping with
probability p each of the jump times of a Poisson process of rate λ corresponds to a
Poisson process of rate λp.

We conclude with the law of large numbers for the Poisson process.

Exercise 6.2.19. Redo Exercise 5.1.7 with Wt replaced by the MG 1√
λ
(Nt − λt)

for a Poisson process Nt of rate λ > 0, to arrive at the law of large numbers for

the Poisson process. That is, t−1Nt
a.s.→ λ for t→ ∞.

Remark. A inhomogeneous Poisson process Xt with rate function λ(t) ≥ 0 for
t ≥ 0 is a counting process of independent increments, such that for all t > s ≥ 0,
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the increment Xt−Xs has the Poisson(Λ(t)−Λ(s)) law with Λ(t) =
∫ t

0
λ(s)ds. This

is merely a non-random time change Xt = NΛ(t) of a Poisson process Nt of rate one
(see also Proposition 5.2.2 for the time change of a Brownian motion). Condition

C3 is then inherited by {Xt} (upon replacing λ by λ(tk)), but condition C2

does not hold, as the gaps between jump times Sk of {Xt} are neither i.i.d. nor of
Exponential law. Nevertheless, we have much information about these jump times
as Tr = Λ(Sr) for the jump times Tr of the homogeneous Poisson process of rate
one (for example, P(S1 ≤ s|Xt = 1) = Λ(s)/Λ(t) for all 0 ≤ s ≤ t).

6.3. Markov jump processes, compound Poisson processes

We begin with the definition of the family of Markov jump processes that are the
natural extension of the Poisson process. Whereas the Brownian motion and the
related diffusion processes are commonly used to model processes with continuous
sample path, Markov jump processes are the most common object in modeling
situations with inherent jumps.

Definition 6.3.1. Let Ti denote the jump times of a Poisson process {Y (t)} of
rate λ > 0. We say that a stochastic process X(t) is a Markov jump process
if its sample path are constant apart from jumps of size Xi at times Ti, and the
sequence Zn =

∑n
j=1Xj is a Markov chain which is independent of {Ti}. That

is, X(t) = ZY (t). The Markov jump processes with i.i.d. jump sizes Xi are called
compound Poisson processes.

In particular, taking constant Xi = 1 in Definition 6.3.1 leads to the Poisson
process, while Zn+1 = −Zn ∈ {−1, 1} gives the random telegraph signal of Example
3.3.6. The latter is also an example of a Markov jump process which is not a
compound Poisson process.

Clearly, the sample paths of the Markov jump process X(t) inherit the RCLL
property of the Poisson process Y (t). We further show next that compound Poisson
processes inherit many other properties of the underlying Poisson process.

Proposition 6.3.2. Any compound Poisson process X(t) (that is, a Markov jump
process of i.i.d. jump sizes Xi), has stationary, independent increments and the
characteristic function E(eiuX(t)) = exp{λt

∫
(eiux − 1)dFX(x)} (where FX(x) de-

notes the distribution function of the jump size X1).

Proof outline. To prove the proposition one has to check that for any h > 0
and t > 0, the random variableX(t+h)−X(t) is independent of σ(X(s), 0 ≤ s ≤ t),
and its law does not depend on t, neither of which we do here (c.f. [Bre92, Section
14.7] where both steps are detailed).

Thus, we only prove here the stated formula for the characteristic function ofX(t).

To this end, we first condition on the event {Y (t) = n}. Then, X (t) =
n∑

i=1

Xi,

implying by the independence of Xj that

E[eiuX(t)|Y (t) = n] = E[eiu
∑n

j=1 Xj ] = h(u)n ,

where h(u) =
∫
R
eiuxdFX(x) is the characteristic function of the jump size X . Since

Y (t) is a Poisson(λt) random variable, we thus have by the tower property of the
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expectation that

E[eiuX(t)] = E[E[eiuX(t)|Y (t)]] = E[h(u)Y (t)]

=
∞∑

n=0

h(u)nP(Y (t) = n) =
∞∑

n=0

(h(u))n
(λt)n

n!
e−λt = eλt(h(u)−1) ,

as claimed.

Remark. Similarly to Proposition 6.3.2 it is not hard to check that if X(t) is a
compound Poisson process for i.i.d. Xi that are square integrable, then E(X(t)) =
λtE(X1) and Var(X(t)) = λtE(X2

1 ).

Consequences of Proposition 6.3.2:

• One of the implications of Proposition 6.3.2 is that any compound Poisson process
is a homogeneous Markov process (see Proposition 6.1.17).

• Another implication is that if in addition EX1 = 0, then X(t) is a martingale (see
Proposition 4.2.3) . Like in the case of a Poisson process, many other martingales
can also be derived out of X(t).

Fixing any disjoint finite partition of R\{0} to Borel sets Bk, k = 1, . . . ,m we

have the decomposition of any Markov jump process X(t) =
m∑

k=1

X(Bk, t), in terms

of the contributions

X(Bk, t) =
∑

τ≤t

(X(τ)−X(τ−))1{X(τ)−X(τ−)∈Bk}

to X(t) by jumps whose size belong to Bk. What is so interesting about this
decomposition is the fact that for any compound Poisson process, these components
are in turn independent compound Poisson processes, as we state next.

Proposition 6.3.3. If the Markov jump process X(t) is a compound Poisson
process, then the S.P. X(Bk, t) for k = 1, . . . ,m are independent compound Poisson
processes, with

∫
Bk

(eiux − 1)dFX(x) replacing
∫
R
(eiux − 1)dFX(x) in the formula

for the characteristic function for X(Bk, t) (c.f. [Bre92, Proposition 14.25]).

Here is a concrete example that give rise to a compound Poisson process.

Exercise 6.3.4. A basketball team scores baskets according to a Poisson process
with rate 2 baskets per minute. Each basket is worth either 1, 2, or 3 points; the
team attempts shots according to the following percentages: 20% for 1 point, 50%
for 2 points, and 30% for 3 points.

(a) What is the expected amount of time until the team scores its first basket?
(b) Given that at the five minute mark of the game the team has scored exactly

one basket, what is the probability that the team scored the basket in the
first minute?

(c) What is the probability that the team scores exactly three baskets in the
first five minutes of the game?

(d) What is the team’s expected score at the five minute mark of the game?
(e) Let Z(t) count the number of 2-point baskets by the team up to time t.

What type of S.P. is {Z(t)}.
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Lq spaces, 23
σ-field, 7, 67

σ-field, Borel, 9, 111

σ-field, cylindrical, 54, 116
σ-field, generated, 9, 13

σ-field, stopped, 81, 101, 114

σ-field, trivial, 8, 44

adapted, 67, 73, 99
almost everywhere, 12

almost surely, 12

auto-covariance function, 59, 98, 99

Borel function, 13
Borel set, 10

Borel-Cantelli I, 21, 106

Borel-Cantelli II, 21
bounded convergence, 31

bounded linear functional, 41

branching process, 90, 112

Brownian bridge, 99
Brownian motion, 51, 84, 95, 101, 117

Brownian motion, fractional, 100

Brownian motion, geometric, 52, 74, 81, 99
Brownian motion, local maxima, 108

Brownian motion, modulus of continuity,
108

Brownian motion, planar, 103

Brownian motion, quadratic variation, 105
Brownian motion, time change, 101, 120

Brownian motion, total variation, 106

Brownian motion, zero set, 108

Cauchy sequence, 40, 97

central limit theorem, 27

change of measure, 31

Chapman-Kolmogorov equations, 115
characteristic function, 55, 125

conditional expectation, 35, 37, 38, 47

continuous, Hölder, 62
continuous, Lipschitz, 62, 105

convergence almost surely, 19

convergence in q-mean, 23

convergence in law, 27

convergence in probability, 20
countable additivity, 8

distribution, 49, 100

distribution function, 25
distribution, Bernoulli, 56
distribution, exponential, 64, 121

distribution, gamma, 121
distribution, Poisson, 56, 119

dominated convergence, 31, 45
Doob’s convergence theorem, 88
Doob’s decomposition, 82

Doob’s inequality, 85
Doob’s martingale, 88

Doob’s optional stopping, 77, 81, 103, 121
Doob-Meyer decomposition, 84

event space, 7

expectation, 15
exponential distribution, 22, 28

extinction probability, 91

filtration, 67, 99
filtration, canonical, 68, 73

filtration, continuous time, 73, 79
filtration, right-continuous, 75
finite dimensional distributions, 52, 54, 115

Fourier series, 42
Fubini’s theorem, 65

Galton-Watson trees, 90

Gaussian distribution, 57, 98
Gaussian distribution, non-degenerate, 17,

57

Gaussian distribution, parameters, 58

harmonic function, 119
Hilbert space, 40, 96

Hilbert space, separable, 42
Hilbert sub-space, 41

hitting time, first, 77–79, 101
hitting time, last, 77

increasing part, 84

increasing process, 84, 105
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independence, 32, 46, 57
independent increments, 52, 60, 73, 95, 119
independent increments, stationary, 116,

120, 125
indicator function, 11

inner product, 40
innovation process, 83

Jensen’s inequality, 18, 45, 72

Kolmogorov’s continuity theorem, 63, 98

Lévy’s martingale characterization, 101,
120

law, 25, 55
law of large numbers, 20, 99, 109, 124
law of the iterated logarithm, 108
Lebesgue integral, 16, 47, 112
linear functional, 41
linear vector space, 39
log-normal distribution, 17

Markov chain, 111
Markov chain, homogeneous, 111
Markov jump process, 64, 125
Markov process, 114
Markov process, homogeneous, 116, 120,

126
Markov property, 114, 116
Markov property, strong, 114, 118
Markov’s inequality, 18, 106
Markov, initial distribution, 112, 115

martingale, 68, 126
martingale difference, 68
martingale transform, 70
martingale, continuous time, 73
martingale, exponential, 87
martingale, Gaussian, 71
martingale, interpolated, 74, 76
martingale, square-integrable, 70, 84, 89,

105
martingale, sub, 71, 99

martingale, sub, last element, 85
martingale, sub, right continuous, 85
martingale, super, 72, 83
martingale, uniformly integrable, 88
maximal inequalities, 85
measurable function, 11
measurable space, 8
memoryless property, 121
modification, 53, 111

modification, continuous, 62
modification, RCLL, 64, 76
monotone convergence, 31, 45
monotone function, 106

non-negative definite matrix, 57

order statistics, 122

Ornstein-Uhlenbeck process, 99

orthogonal projection, 41
orthogonal sequence, 71

orthogonal, difference, 71
orthonormal basis, complete, 42, 96

parallelogram law, 40
Parseval, 42
Poisson approximation, 123

Poisson process, 119
Poisson process, compound, 125
Poisson process, inhomogeneous, 124
Poisson process, time change, 125
predictable, 70

previsible, 70, 82
probability density function, 16, 26, 47, 56,

100, 102
probability density function, Gaussian, 57
probability measure, 8

probability measures, equivalent, 32
probability space, 8
probability space, complete, 20

random telegraph signal, 64
random variable, 11

random variable, integrable, 17
random variable, square-integrable, 23, 33
random vector, 55, 57
random walk, 50, 62, 69, 83, 103, 112

random walk, simple, asymmetric, 78
random walk, simple, symmetric, 78
recurrent state, 113
reflection principle, 102
regeneration point, 101

regular conditional probability distribution,
47

regular conditional probability, 46
Riesz representation, 42

sample path, 49, 79
sample path, continuous, 53, 62, 79, 95, 99

sample path, RCLL, 64, 125
sample space, 7
Schwarz’s inequality, 19, 40
simple function, 11

state space, 111, 114
stationary, increments, 62
stochastic integral, 75, 106
stochastic process, 49

stochastic process, auto-regressive, 114
stochastic process, continuous time, 49
stochastic process, counting process, 119
stochastic process, discrete time, 49
stochastic process, Gaussian, 59, 95

stochastic process, point process, 120
stochastic process, quadratic variation of,

104
stochastic process, right continuous, 85
stochastic process, stationary, 61

stochastic process, stopped, 77, 80, 103
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stopping time, 76, 79, 101, 114

take out what is known, 45
tower property, 44
transient state, 113
transition probabilities, 115
transition probabilities, regular, 116
transition probabilities, stationary, 111, 116
triangle inequality, 24, 40

uncorrelated, 33, 46
uniform measure, 10, 122
uniformly integrable, 30, 77, 81, 88

variation, 104
variation, cross, 85
variation, quadratic, 103
variation, total, 103, 106
version, 53

weak convergence, 29
with probability one, 12


