MATH 151. Course Summary. Winter 2000.

Section 1. Basic Concepts.

Definitions of events, outcome spaces Ω , probabilities (P(A)).

Equally likely outcomes.

Counting definition of probability: $P(A) = \#(A)/\#(\Omega)$.

Counting rules, combinations and permutations.

Axioms of probability:

- (1) Non-negativity: $P(A) \ge 0$ for all events A;
- (2) Total one: $P(\Omega) = 1$;
- (3) Addition: for a partition B_1, \dots, B_n of $B, P(B) = \sum_{i=1}^n P(B_i)$.

Complement Rule: $P(A^c) = 1 - P(A)$.

Difference rule: If $A \subseteq B$ then $P(A) \leq P(B)$ and $P(B \cap A^c) = P(B) - P(A)$.

Inclusion-Exclusion rule: $P(A \cup B) = P(A) + P(B) - P(A \cap B)$.

DeMorgan's Rules: $(A \cap B)^c = A^c \cup B^c$, $(A \cup B)^c = A^c \cap B^c$.

Boole's inequality.

Definition of conditional probability: $P(A \mid B) = P(A \cap B)/P(B)$.

Multiplication rule: $P(A \cap B) = P(A \mid B)P(B)$.

Rule of average proportions: For a partition B_1, \dots, B_n of Ω ,

$$P(A) = P(A|B_1)P(B_1) + \cdots + P(A|B_n)P(B_n).$$

Bayes' Rule: If B_1, \dots, B_n partition Ω then

$$P(B_i|A) = \frac{P(A|B_i)P(B_i)}{\sum_{j=1}^{n} P(A|B_j)P(B_j)}.$$

Independence: Events A and B are independent if $P(A \cap B) = P(A)P(B)$.

Tree diagrams.

Multiplication rule for n events.

Pairwise independence and mutual independence.

Section 2. Binomial distribution.

Definition of binomial distribution: If X is distributed binomial (n, p) then

$$P(X = k) = \binom{n}{k} p^k q^{n-k} \text{ for } k = 0, \dots, n; \ q = 1 - p.$$

Definition of binomial coefficients and Pascal's triangle.

Expected number of successes for binomial (n, p) is np.

Normal approximation to the binomial:

- Standard Normal density: $\phi(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}x^2}$, for $-\infty < x < \infty$.
- Standard Normal distribution: $\Phi(z) = \int_{-\infty}^{z} \phi(x) dx$.
- If X is distributed as Normal (μ, σ^2) than $P(a \le X \le b) = \Phi(\frac{b-\mu}{\sigma}) \Phi(\frac{a-\mu}{\sigma})$.
- If X is distributed as Normal (μ, σ^2) then $A = (X \mu)/\sigma$ has a Standard Normal distribution.
- $\Phi(z) + \Phi(-z) = 1.$

If X has a binomial (n, p) distribution and np is large, then $P(a \le X \le b) \approx \Phi(\frac{b + \frac{1}{2} - \mu}{\sigma}) - \Phi(\frac{a - \frac{1}{2} - \mu}{\sigma})$.

Poisson Approximation to the binomial:

• Poisson distribution with mean $\mu: P(X=k) = \frac{e^{-\mu}\mu^k}{k!}$.

If X has a binomial (n, p) distribution and for large n, np is small, then X has an approximately Poisson distribution with mean np.

Hypergeometric distribution: Used for sampling without replacement. In a population of N individuals containing G "good" individuals and B "bad" individuals, if a sample of size n is chosen without replacement the probability of getting g "good" elements and b=n-g "bad" elements is $\frac{\binom{G}{g}\binom{B}{b}}{\binom{N}{b}}$.

Normal Approximation to the hypergeometric.

Section 3. Random Variables.

Definition of random variables, univariate distributions P(X=x), joint distributions

$$P(X = x, Y = y) = P(x, y).$$

Marginal distributions: $P(X = x) = \sum_{\text{all } y} P(x, y), P(Y = y) = \sum_{\text{all } x} P(x, y).$

Independence: P(X = x, Y = y) = P(X = x)P(Y = y).

Properties of expectation:

- Expectation of a constant is constant.
- If I_A is an indicator function for the set A then $E(I_A) = P(A)$.
- Definition: $E\{g(X)\} = \sum_{\text{all } x} g(x)P(X = x)$.
- $\bullet \ E(aX+b) = aE(X) + b.$
- E(X + Y) = E(X) + E(Y).
- If X and Y are independent E(XY) = E(X)E(Y).

Tail Sum Formula: If X takes on values $\{0, \dots, n\}$ then $E(X) = \sum_{k=1}^{n} P(X \ge k)$.

Markov's Inequality: If $X \ge 0$ then $P(X \ge a) \le E(X)/a$ for every a > 0.

Definition of Variance: $Var(X) = E\{(X - \mu)^2\}.$

Computational formula for variance: $Var(X) = E(X^2) - \{E(X)\}^2$.

Scaling and Shifting: $Var(aX + b) = a^2Var(X)$.

Standardized Random Variable: If X has mean μ and variance σ^2 then $Z = (X - \mu)/\sigma$ has mean 0 and variance 1.

Chebychev's inequality: For any random variable X with mean μ and variance σ^2 , and for any $k \geq 0$, $P(|X - \mu| \geq k\sigma) \leq 1/k^2$.

Addition Rule for variances: If X and Y are independent, Var(X+Y) = Var(X) + Var(Y).

If X_1, \dots, X_n are i.i.d. random variables with mean μ and variance σ^2 and

$$\bar{X}_n = S_n/n = (X_1 + \cdots + X_n)/n$$
, then $E(\bar{X}_n) = \mu$ and $Var(\bar{X}_n) = \sigma^2/n$.

Law of Large Numbers: If X_1, \dots, X_n is a sequence of i.i.d. random variables with mean μ and variance σ^2 , then for every $\epsilon > 0$, $P(|\bar{X}_n - \mu| < \epsilon) \to 1$ as $n \to \infty$.

Normal Approximation: $\sqrt{n}(\bar{X}_n - \mu)/\sigma$ has an approximate Standard Normal distribution, provided $\sigma^2 < \infty$.

Moment generating function $g(s) = E(e^{sX})$, g'(0) = E(X), $g''(0) = E(X^2)$ provided g(s) finite for small |s|.

Discrete distributions:

Infinite sum rule: If an event A partitions into an infinite sequence of mutually exclusive sets $\{A_i\}_{i=1}^{\infty}$ then $P(A) = \sum_i P(A_i)$.

Expectation: $E(X) = \sum_{x} x P(X = x)$ provided the absolute sum converges.

- Geometric distribution (p). Time until first success in a sequence of Bernoulli trials.
- $\odot P(T=i) = q^{i-1}p \text{ for } i = 1, 2, \dots; q = 1 p.$
- $\odot E(T) = 1/p, Var(T) = q/p^2.$
- Negative Binomial distribution (r, p): Time to the r'th success in a sequence of Bernoulli trials.

$$O(T_r = t) = \binom{t-1}{r-1} p^r q^{t-r} \text{ for } t = r, r+1, \cdots$$

- $\odot E(T_r) = r/p, Var(T_r) = rq/p^2.$
- \bullet Poisson distribution. See Section 2. $E(N)=\mu, Var(N)=\mu.$
- Sum of independent Poissons is Poisson.
- $\odot N_1, N_2$ independent Poissons, N_1 conditioned on $N_1 + N_2 = n$ is Binomial.
- Poisson Random Scatter (with intensity λ).

 \odot Thinning a Poisson Scatter (new intensity λp).

Section 4. Continuous distributions.

Definition of a density $f(x) = \lim_{dx\to 0} P(X \in dx)/dx$.

If X is a continuous r.v. with density f then $P(a < X < b) = \int_a^b f(x) dx$.

$$\int_{-\infty}^{\infty} f(x)dx = 1, f(x) \ge 0.$$

 $E\{g(X)\}=\int_{-\infty}^{\infty}g(x)f(x)dx$ provided g(x)f(x) is absolutely integrable.

- Uniform distribution on (a, b): f(x) = 1/(b-a) if $x \in (a, b)$ and 0 otherwise:
- $\bigcirc P(c < X < d) = (d c)/(b a) \text{ if } c, d \in (a, b).$
- $\odot \ E(U) = \frac{a+b}{2}, Var(U) = \frac{(b-a)^2}{12}.$
- Normal distribution. See Section 2.
- \odot Central Limit Theorem. If X_1, \dots, X_n are i.i.d. random variables with mean μ and variance $\sigma^2 < \infty$, and if $S_n = X_1 + \dots + X_n$ then $E(S_n) = n\mu$ and $Var(S_n) = n\sigma^2$. If $Z_n = (S_n n\mu)/(\sqrt{n\sigma})$ is the Standardized sum, then $\lim_{n\to\infty} P(a < Z_n < b) = \Phi(b) \Phi(a)$ for a < b.
- Exponential distribution with rate λ :
- $f(t) = \lambda e^{-\lambda t}$, if $t \ge 0$ and 0 otherwise.
- $\odot E(T) = 1/\lambda, Var(T) = 1/\lambda^2.$
- \odot Memoryless property. If T is distributed as exponential(λ) then

$$P(T > t + s | T > t) = P(T > s), \quad t \ge 0, \quad s \ge 0.$$

- Poisson arrival processes. The number of particles N(I) arriving in a time interval I of length t is a Poisson random variable with mean λt . This is called a Poisson arrival process with rate λ . The times between arrivals are independent exponential random variables with same rate λ .
- Gamma distribution (r, λ) . Time until r'th arrival in a Poisson arrival process with rate λ . Sum of r i.i.d. exponential (λ) .
- $\odot f(t) = e^{-\lambda t} (\lambda t)^{r-1} \lambda / (r-1)!$ for $t \ge 0$, and 0 otherwise.
- $\odot E(T_r) = r/\lambda, Var(T_r) = r/\lambda^2$

Definition of Distribution Functions: $F(x) = P(X \le x)$.

Interval Probabilities: $P(a < X \le b) = F(b) - f(a)$.

Rules for distribution functions:

(1)
$$F(x) \ge 0, F(-\infty) = 0, F(\infty) = 1;$$

- (2) F(x) is a non-decreasing function of x;
- (3) F(x) is a right-continuous function of x.

For continuous distributions, F(x) is the area under the density curve f(x) up to $x: F(x) = \int_{-\infty}^{x} f(x) dx$. Conversely, $f(x) = \frac{d}{dx}F(x)$.

Change of variable formula: Let X be a continuous random variable with density $f_X(x)$.

- (1) Linear functions. If Y = aX + b then the density $f_Y(y)$ of Y is $f_Y(y) = f_X(\frac{y-b}{a})/|a|$
- (2) One-to-one differentiable functions. If Y = g(X) where g is strictly monotonic then $f_Y(y) = f_X(g^{-1}(y))/|\frac{dy}{dx}|$. If g is strictly increasing $F_Y(y) = F_X(g^{-1}(y))$.
- (3) Functions that are not one-to-one. $f_Y(y) = \sum_{\{x:g(x)=y\}} f_X(x)/|\frac{dy}{dx}|$.
- (4) Maxima and minima. If X_1, \dots, X_n are independent random variables with distribution functions F_{X_1}, \dots, F_{X_n} , and $X_{max} = \max\{X_1, \dots, X_n\}$, $X_{min} = \min\{X_1, \dots, X_n\}$, then $F_{X_{max}}(x) = F_{X_1}(x) \dots F_{X_n}(x)$, and $F_{X_{min}}(x) = 1 \{1 F_{X_1}(x)\} \dots \{1 F_{X_n}(x)\}$. If the X_i 's are i.i.d. with distribution F, then $F_{X_{max}} = \{F(x)\}^n$ and $F_{X_{min}} = 1 \{1 F(x)\}^n$. Therefore, $f_{X_{max}}(x) = n\{F(x)\}^{n-1}f(x)$ and $f_{X_{min}}(x) = n\{1 F(x)\}^{n-1}f(x)$.
- Lognormal distribution. $Y = e^X$, X is Normal random variable.
- ⊙ If X_1, \dots, X_n are positive i.i.d. random variables, $\mu = E(\ln X)$ and $\sigma^2 = VAR(\ln X) < \infty$ and if $W_n = X_1 \cdot X_2 \cdot X_n$ then $E(\ln W_n) = n\mu$ and $Var(\ln W_n) = n\sigma^2$. For $\ln X$ Standardized random variable $\lim_{n\to\infty} P(a < W_n < b) = \Phi(\ln b) \Phi(\ln a)$ for a < b.

Section 5. Continuous Joint Distributions.

- Uniform distribution on the plane. A random point (X, Y) in the plane has a uniform distribution on D, where D is a finite region of the plane with finite area if
 - (i) (X,Y) is certain to lie in D;
 - (ii) For a subregion C of D, $P((X,Y) \in C) = area(C)/area(D)$.

Definition of joint density: $f(x,y) = \lim_{dx\to 0, dy\to 0} P(X \in dx, Y \in dy)/(dx \ dy)$.

Probability formula. The probability that (X, Y) lies in a region B of the plane is the volume under the joint density confined by B; that is $P((X, Y) \in B) = \iint_B f(x, y) dx dy$.

Marginal densities: $f_X(x) = \int_{-\infty}^{\infty} f(x,y) dy$, $f_Y(y) = \int_{\infty}^{\infty} f(x,y) dx$.

Independence: If X and Y are independent then $f(x, y) = f_X(x)f_Y(y)$.

Expectation: $E\{g(X,Y)\} = \iint g(x,y)f(x,y)dx dy$.

Independent Normal variables. If X and Y are independent Standard Normal random variables then $\phi(x,y) = \frac{1}{2\pi}e^{-\frac{1}{2}(x^2+y^2)}$, for $(x,y) \in (-\infty,\infty)^2$.

Rayleigh distribution: $R^2 = X^2 + Y^2$. $f_R(r) = re^{-\frac{1}{2}r^2}$ for $r \ge 0$ and 0 otherwise. R^2 is exponential (1/2).

Linear combination of Normals: If X and Y are independent Normal random variables with means λ and μ and variances σ^2 and τ^2 respectively, then $Z = \alpha X + \beta Y$ is Normally distributed with mean $\alpha \lambda + \beta \mu$ and variance $\alpha^2 \sigma^2 + \beta^2 \tau^2$.

Operations: If X has density f_X and Y has density f_Y then Z = X + Y has density on the line $f_Z(z) = \int_{-\infty}^{\infty} f(x, z - x) dx$.

If X and Y are independent then $f_Z(z) = \int_{-\infty}^{\infty} f_X(x) f_Y(z-x) dx$.

Section 6. Conditional distributions and expectations.

Conditional distribution (discrete case): P(Y = y | X = x) = P(X = x, Y = y) / P(X = x).

Conditional density: $f_Y(y|X=x) = f_{X,Y}(x,y)/f_X(x)$.

Multiplication rules: P(X = x, Y = y) = P(X = x)P(Y = y|X = x)

and
$$f_{X,Y}(x,y) = f_X(x)f_Y(y|X=x)$$
.

Average conditional probability:

$$P(B) = \sum_{all\ x} P(B|X=x)P(X=x),\ P(Y=y) = \sum_{all\ x} P(Y=y|X=x)P(X=x)$$

Or
$$P(B) = \int P(B|X=x)f_X(x)dx$$
, $f_Y(y) = \int f_Y(y|X=x)f_X(x)dx$.

Bayes' Rule:
$$P(X = x | Y = y) = P(Y = y | X = x) P(X = x) / P(Y = y)$$

and
$$f_X(x|Y = y) = f_Y(y|X = x)f_X(x)/f_Y(y)$$
.

Independence: Random variables X and Y are independent if for all subsets B in the range of Y, $P(Y \in B|X = x) = P(Y \in B)$.

Conditional expectation: $E(g(Y)|X=x) = \sum_{all\ y} g(y)P(Y=y|X=x),$

or
$$E(g(Y)|X=x) = \int g(y)f_Y(y|X=x)dy$$
.

Conditional expectation E(g(Y)|X) as a random variable.

Average conditional expectation: E(Y) = E[E(Y|X)].

That is
$$E(Y) = \sum_{all \ x} E(Y|X=x)P(X=x)$$
, or $E(Y) = \int E(Y|X=x)f_X(x)dx$.